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(1) INFORMATION RE PRESENTATION

How do we talk to computers ? Unfortunately not as easily as we talk
to other people. Think of the ways humans can communicate--writing,
speaking, hand signs, facial expressions, etc. One of the rude awakenings

But even punched cards hide the inner level of communication within a
c¢omputer. Internally a computer understands voltages only. That in fact
is why we input information on cards. Once a card is punched it is rela-
tively easy to send it through an electromechanical device which will con-
vert the information punched on the card into voltages which can be inter-
preted by the computer.

Thus, information must be transformed into forms that electronic cir-
cuits can understand. To make this perfectly clear let us consider a light
switch which in many ways is similar to some of the elementary building
blocks used to make & computer. Of course the switch understands only one
thing--physical movement--is it on or off? Imagine two people, a room, and
a light switch.

(" Turn on 0.K., I Idon't.

5155 the light. understand. -

Do you see the problem? The verbal command has not been transformed
into a form the switch understands.

Turn on 0.K., I'll flip Now I'll respond.

% ? the light, E ? the switch. [--—
— 7 . | g /// ' “"dlLJ

i
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Now something happens! fhis may seem trivial but it brings the problem

into the open.

What sorts of things do computers (and logic circuits) understand? We
repeat--VOLTAGES!

How many different voltages? TWO!

Why only two? Because engineers have been unable to build reliable
circuits for anything but two.

What are these voltages?

H

high = approximately 3.0 volts
L =

low approximately 0.2 volts

nn

That only two voltages are recognized by digital logic is fundamental
to the whole field. It is SO important that a name has been given to it--
BINARY--which means that only two stable states exist. Examples of binary
devices are: .

Switches - either ON or OFF

Punched Cards - any given position either has a hole
punched out or it doesn't

Logic Circuits - put out either a high or a low voltage

Magnetic Tape - a given spot has either a north pole or
south pole pointing up

These two different states are commonly given names of 1 and 0.* For
example if the choices in the left-hand column are arbitrarily made, the
meanings of a 1 and 0 are shown in the right two columns.

If a 1 is chosen then a 1 means and a 0 means
to mean
switch is open . switch open switch closed
a given spot on a card| hole at that spot ‘ no hole st that
is punched out spot

High High Low
a given spot is a north pole south pole
north pole

L L H

Again let us emphasize. You, the designer, can choose the meaning of
al. oOf course, you must have some way of telling the world what your

*As the designer you can choose what a 1 means.



choice was so your design can be understood. As we will see a standard
notation has been devised to make your choice evident.

a binary device. 1 and 0 do not have a numerical meaning. vYou could use X
and Y for the two names and everything would work as well. Of course it
would be unconventional.

Now we come to an important topic. Can ordinary human (decimal) num-
bers be represented by only H and L voltages? If not then it will not be
possible to build g computer. The answer must be yes.

Of course there are 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

* = ROCKS DECIMAL NUMBER
REPRESENTING THE ROCKS

*
*%

Fekdk

Tk

Fedekede
Fedekdedese
Fdedededdode
Fdededkdokd
Fhdeddkddk

O 00 SUuPLWN RO

What do I do now? I have run out of digits. We solve this by a very
clever trick called the carry.

We get a carry of 1 out of the units column into the tens column and
change the 9 to a 0. '

Fhdokdokdokdk : 10

This process always works. Suppose we have 99 rocks and 1 more falls out
of the chute.

9 9
change 9 to a 0
. carry 1 into the next column
+ 9
change the 9 to 3 0

carry 1 into the next column




largest digit you could have in a given column in an ordinary number. We
call numbers represented in such a manner BINARY numbers. Perhaps a better
phrase would be BINARY representation since what we will be doing is repre-
senting the number of rocks by 1's and 0's. The same could be said about
the decimal representation for the same Pile of rocks which uses 0'g
through 9's,

* = ROCKS BINARY REPRESENTATION
0
* 1

What do we do now? We have run out of binary digits!

a) Change the 1 to a 0
b) Put a carry in the next column.

*% 10
KRk 11

What do we do now? Well, this is exactly like the case of 99 rocks in
decimal. Both 9'g were changed to 0's and a 1 Carry was put into the next
column to make 100. In binary, 11 would change to 100 since in binary 11
is the largest two-digit binary number you can have just as 99 is the
largest two-digit decimal number you can have.

ek 100
Fdekkk 101
FTkdekkk 110
oo dedese B 111
Fddekdededesk 1000
Tk 1001
Fedededededededededs 1010
etc.

We see that it really is possible to represent numbers using just two
symbols, 1 and 0. There is a problem in that a binary 11 is indistin- -
guishable from a decimal 11. But a binary 11 really equals a decimal 3.
We need some way to tell what kind of representation we are talking about.
For this Purpose we use a small subscript:

binary 11 = 112 decimal 11 = 1110

A more mathematical way of looking at either binary or decimal numbers
is the place value system. 1In thig system a digits value depends on the
column it is in, For example, in decimal we have a 1's column, 10'g column,
100's column, etc. Take the decimal number 432 and label the columns
starting from the right with columm 0.

column number 2 1 -0
4 3 2



éolumn number description
0 1's column
1 10's column
2 100's column
etc.

In fact 432 really means (4 x 100) + (3 X 10) + (2 x 1).

A similar thing can be done in binary eéxcept now

column number description
0 1's column
1 2's column
2 4's column
3 8's column
ete.

Now 1012 really means (1 X4) + (00X 2 + (LXx1) = 510.

Thus we see that a 1 represents the Presence of a power of 2 and a 0
its absence.

How the 1's and 0's in a binary number are in turn represented inside
the computer by voltages is again the designers choice. Some designers
represent a 1 by H, others do the Opposite. The symbols used by the designer

Now for another Piece of jargon. The individual 1's and O0's in a
binary number are called BITS (B I nary digiTs).

The only way to feel comfortable with binary numbers is to count to
6410 in binary. The student is urged to do thig now. So you can check
yourself along the way.

1310 = 1o,
19, = loow
33, =~ 1oooo,
63, = 111,

Let's take a break and discuss a less weighty but related subject--

more digits the more accuracy you can get. The same is true for binary
computers. The smallest have eight bitg of accuracy and some of the very
large, fast Scientific machines have 60 bits. The design in

this book is a 12 bit machine. '

Another bit of jargon--for our machine 12 bits of data is called a
WORD. Thus this machine has 12 bit words whereas the Control pata 6000
series of computers has 60 bit words. The IBM 360-370 series has 32 bit
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words. There are more PDP-8 minicomputers in the field than any other sin-
gle type of computer (>25,000 installed), the PDP-8 has 12 bit words. Most
new minicomputers being produced have 16 bit words since it is a nice com-
Promise between cost and accuracy.

There is another parameter besides bits/words thar is important in
describing memories. That is the number of distinct words of data that can
be stored. A fairly typical minicomputer. would have four thousand (4k)
words of storage. Large scientific machines may have millions of words of
storage. Fortunately from a learning standpoint a small memory is as good

Now let's get back to binary numbers. These numbers are elegant since
they can represent any decimal number with only two symbols, 0 and 1.
Remember this is hecessary for internal use in a computer. They also have
several disadvantages. One of them is it takes more binary digits than
decimal digits to Tepresent a given number. TFor example take 110010 .
That is equal to 50 . It is far easier for a human to keep track o% the
two digits in 5010 than the six in 110010,. A simple shorthand has been
developed for binary numbers to collapse the number of digits a human has
to work with. The trick is to start at the right side of the word and

110 010
6 2

Now take each 3 bit group and convert it to g single number between 0
and 7. Now you have to remember only the binary numbers between 0 and 7.
The resulting number is called an octal number. Why? (Hint: Decimal num-
bers have 10 distinct digits, 0-9; binary numbers have 2 distinct digits,
0, 1). To show a number is octal we write a small subscript 8 to the right
of it. Converting between octal and binary is now simple. The process ig
best shown by examples:

binary ----> octal ' octal ----> binary

1011 13 6410 110 100 001 000
11001 31 37 011 111

111010 72 14 001 100

All of the commands for the computer will be given in octal because it
is such a convenient shorthand.



(2) COMBINATIONAL LOGIC (The Logic of Here and Now)

There are two main classes of digital logic circuits, combinational
(sometimes called combinatorial) and sequential. We will need both types
to accomplish our goal of building hardware that will execute a flow
chart.

Combinational circuits act on information represented by H and L
voltages and immediately produce an output. Actual circuits take a few nano
seconds, which is close enough to immediate (light will travel 1 foot in
one nanosecond). This class of circuits is the simplest to understand so
we will treat it first.

In general we will not refer to 0's and 1's to represent our data since
we are more interested in the voltage which represents it. The reason for
this is simple. When you check a circuit the only thing you will be able to
test are voltages. As we will sece a set of symbols has been devised that
gives you these voltages directly at a given point in a digital circuit. It
is then a simple matter to place a logic probe at that point and get a
visual display of the information. The logic probe used in the lab has
small green and red lamps for display. When a given point is L the green
lamp will turn on. The red lamp will light for a H input.

Let us now go over the symbols which describe digital logic.

> DD D

INVERTER AND : OR special purpose element

Do not worry at the moment about the function of each of these symbols.
Each will be introduced in due course. Let us discuss some of the general
properties of the symbols.

1) The shape uniquely identifies its logic function except for
the rectangle where this information is supplied by the device
name .

2) 1Inputs and outputs (copper wires) are represented by lines
going into and out of the symbol. For example:

3) Outputs are always on the right; inputs are always on the
left, top, or bottom. Thus, we know that in the above example

the wires on the left are inputs and the single wire on the
right is an output and we can now label it as follows:

INPUT 1 ——
F_::>—————<OUTPUT
INPUT 2 —1—

Another example would be a decoder. At this point of course you
you don't know what a decoder is. Nonetheless if T draw one




for you you should be able to tell which lines are inputs and
which outputs,

OUTPUTS

4) The symbols are important since they quickly convey a
large amount of information Pictorially. The Pictoral aspect
should be emphasized. The éye can quickly éncompass a large

5). Voltage polarities agre easily shown. The convention jig
that a small circle represents a low voltage and itg absence

a high voltage. For example suppose I have a special purpose
circuit called a lamp driver. It's function will be to accept

Such circuits are very useful in g computer since they can
be used to visually monitor a signal.

Let us now try to represent a lamp driver graphically:

a) It is a non-standard circuit, Therefore, itg symbol will
be a rectangle. Of course, a bare rectangle doesn't tell
you much so we put a name inside it which describes its
function.

LAMP
DRIVER

b) 1Its output is on the right side of the box. Since its
output is light and not a copper wire no output line hag
been drawn. An implied output (light) nonetheless existg,

c) One vital Piece of information ig still missing. What
kind of an input voltage turns on the light? 1Inp all of
the lamp drivers used on your lab kit a high voltage turng
on the lamp. Therefore, it would be drawn as below:

LAMP
DRIVER



d) At this point review a) - c). You should be able to look
at the above symbol and extract the following pieces of
information just from the Picture:

1.) it is a special purpose circuit (shape)

2.) Presumably it turns g light ON or oFF (from its name )
©3.) a high voltage will turn the light ON (its input line

has no smalil circle on it)

your lab kit this could be done simply by unplugging the 7406
lamp driver 1C (integrated circuit) and substituting a 7407
IC. How would this circuit be represented?

Small circle tells you that a low
voltage is required to turn on B —
the lamp

6) Note that the graphical symbol also suppresses much irrelevant
information. 7Tt does not tell you what's inside the lamp driver.

gremlin as long as the lamp was reliably turned on or off. The
student should get used to looking at symbols as logical building
blocks and forget about their internal workings. We are con-
cerned only with the logical process of building a computer by

One of the marvels of modern technology is the IC (integrated
circuit). They are cheap, compact logical building blocks which
have been carefully designed so that very diverse IC's can be
interconnected without worrying about impedance matching, and
all the other black arts of electrical engineering.

One last word of reassurance. Even pProfessional computer
designers are not concerned with the internal construction of
an IC. If you are still not convinced take several years of
high level electronics courses. But be warned--you won't be
a better computer designer by virtue of your knowledge of the
inner workings of IC's.

Let's define one more special purpose device and then experiment by
connecting them together. The lamp driver required an input to activate
it. We will design a special purpose circuit which produces an output
which in turn can be input to the lamp driver.

RED
GORPSCH

ECTOR _|

From the above Picture we can determine:

— will be high when & red gorpsch is detected

1) It is a special purpose circuit.
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2) TIts input is implied on the left. Since there is no input
wire there must be some other means of inputting information to
the device. (Perhaps there really is a gremlin sitting inside
looking out a window on the left side. When he sees a red
gorpsch he throws g switch which drives the output line-high.)

3) The output will be H if a Red Gorpsch passes near the
detector. - ,
Let's take the two devices and hook them together,
—_—

RGD LD

When will the lamp light?

a) Only when a red gorpsch bpasses near the detector. In that
case the RGD output will g0 H and that is the polarity needed
by the lamp driver to turn on the light.

b) Note that onlv a red gorpsch will produce a H output--a green
gorpsch would not, nor would a red elephant. Suppose a green
gorpsch passed near the RGD. 1Its output would be L and the
lamp driver would turn the lamp off.

Now suppose we redesign the lamp driver so it will turn on the
light when itg input goes L. Again we hook the two devices
together.

RGD —d4 i

When will the lamp light? The light will be on only when the

lamp drivers input is L. Since the RGD is a binary device it

always outputs either a H or L. Tts output will be I, if there
is NOT a red gorpsch.

We have just been introduced to the NOT operation of logic. This is
a fundamental concept and we must explore it thoroughly.

First let us describe how we talk about the NOT operation. Suppose
we have the red gorpsch detector by itself.

RGD RG

It would be logical to label its output line RG (standing for red gorpsch).
A line labeled RG has no meaning by itself since we do not know whether an
H or L represents a red gorpsch. To decide that we must trace it back to
its source which will tell us its polarity. 7In this case RG = H,
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There are only two voltages this line can have. The other one has to
be L which corresponds to red gorpsch not. We write red gorpsch not as RG.

The crux of the matter is:

A LOGICAL NOT EXISTS WHENEVER A SIGNAL IS USED IN THE
OPPOSITE POLARITY FROM ITS GENERATED POLARITY,

logical NOT

RGD R G» // RG LD
means this line will means the same line
be H when I have»a will be L when T have
red gorpsch red gorpsch not

Note: There is no special integrated circuit required to perform the logical
not operation. It happens ANY time a signal is used in a polarity opposite

reason it is used in human thought. Many times it is easier to organize
your thoughts if g certain condition is not true. An example would be: I
will take a trip next week if my car does not break down. Most of us prefer

The same thought processes are used in digital logic. 1In the computer
you will build, it is Nécessary to determine if the accumulator ig equal to
0. (All 12 bits equal 0.) As you will see when you start to wire that
section it seems more natural to compute AC # 0. It is certainly true
that

AC =0 is the same ag ACF0

Suppose AC # d was generated H.

]
o

circuit to detect I AC # 0 , AC
if AC#0

this line same line will
high if AC # 0 be low if AC = 0



ourselves that it must be used in a polarity opposite to its generated
polarity,

[

AC # 0 /Ac 0 5

Now we come to another problem. We know that the circuit that is going
to use AT # U as an input will have to accept it as a L signal. Suppose it
€xpects its inputs H? We need a device (called an inverter) that will fix
up the polarity to be what we want. It has the property of outputting a
signal of Opposite polarity to its input.

Its symbol is:

This device will accept an L input and
produce an H output. Of course it

will also accept an H input and produce
an L output.

INVERTER
Both behaviors are of course implied in the graphical symbol. Ag drawn, the
behavior for low inputs is emphasized.

An entirely equivalent representation of the same device would be:

This symbol describes the behavior of an inverter for an H input, which
produces an I output. Of course an L input will produce an H output,

Convince yourself that in fact:

is identical to



Why draw it two di
naturally dictate w
example of AC = 0,

fferent ways? The logic you are build
hich Tepresentation to use.

We go through the following

ing wilil
Let us reconsider the
steps:

1) We have a 1o

gic block which expects AC =
an H signal.

0 to be input as

2) With the IC's commonl

y available we find it more
compute AC # 0 which is r

natural to
epresented by an H signal.

3) We must do g logical NOT operation on AC # 0 to get AC

= 0.

Logic block that Logic block that uses

computer AC # 0 ag H o AC =0 as an g inpu#
output

—_—
PROBLEM '

logic NoT required \ polarities

to get AC # 0 don't match!

4) Solution: Place an inverter in the line to fix up the polarity,

to use it with an H pola

rity, we draw the inve
emphasizes its behavior

rter in a form which
with L inputs, namely:

RGD1 RGD2

Also assume two different types of lamp drivers, LDl and LD2:

— LD1

LD2

e

13
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Let us hook up all four possible combinations and ask when the lamp will

be ON.
RGD1 LD1
-
R6D1 r—x LD2
L -
RGD?2 o~+__ LD1
RGD2 O——n 9 LD2

redigorpsch

red gorpsch not

-~

-~

Do the same four cases but with an inverter inserted between the RGD and LD.

RGD1

Do

RGD2

RGD1 T’"DH

LD1

D‘@{>,___

RGD?2

LD2

red gorpsch not

red gorpsch

~d

-



English has sever
Without these words it

following words:

Logic has simil

(3) THE LOGICAL "AND"

there are just three, NOT, AND, OR.

tion in Chapter 2.

The definition of the logical AND is:

The definition of true
A non-circled line

sent L voltages.

come in many flavors.

are:
NAME
2 input AND

gate

2 input AND
- gate

2 input AND
gate

3 input AND
gate

4 input AND .
GATE '

8 input AND
gate

SYMBOL
—A
—1{8 Y
AN
Y
—1&
14—
Y
—Q 8
—A
— g YO—

L1

al words used to express
would be difficult to sp
NOT, AND, OR, GREATER THAN, LESS T

ar constructs but a more

follows the usual rules.
represents an H v
The common AND gates ‘and their

CAT, #

7408

7400

7402

7410

7420

7430

eak.
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logical relationships.
Try it without the
HAN, EQUAL, etc.

limited vocabulary. 1In fact
We have covered the logical NOT Oopera-

THE OUTPUT WILL BE TRUE IF ALL INPUTS ARE TRUE.

Small circles repre-
oltage. AND gates
IC catalog numbers

BEHAVIOR
Y will be H if A AND
B are both H

Y will be L if A AND
B are both H

Y will be H if A AND
B are both 1,

Y will be L if A AND
B AND C are all H

will be L if A AND
AND C AND D are all

oW

The output will be L
if all inputs are H
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There is an equivalent way of describing the logical AND function. It
is called the truth table for the device. All Possible combinations of
inputs are listed in a table and the output for each input combination is
listed on the same line. Note that the truth table gives exactly the same
information about the 7408 as the

INPUTS OUTPUT 7408 graphical symbol. The symbol says that

A B v the output will be H only if A AND B
are H. All other combinations will

L L L 3 give an L output. The symbol has the

L H L % useful property of emphasizing the last

H L L 4 line of the truth table. As & designer

H H H

if you need a logical AND in fact it
is more natural to think only of the
last line of the table. Again we see that our symbols help out thought
Processes by emphasizing only the relevant information.

The truth tables for the other AND gates are shown beloy:

7400 7402 7410

A B!Y A B Ccly

L L |H L L L |H

L H)|H L L H|H

H L | H ‘"L H L |H

H HI|L L H H|H

H L L |§H

Note that the three input AND H L H|H
truth table has twice as many input H H L |=H
combinations as the two input gates. B H H|L

This makes the truth table incon-

veniently long. As a result, truth tables are seldom used for gates with
more than three inputs. How many input combinations are there for the 7430
gate?

Now let us wire up some simple circuits. Assume we have tywo detectors
and a lamp driver with the properties shown by their graphical symbols.

PINK - '
ELE PHANT e LD
DETECTOR ’
" This circuit will light the lamp only

RED _J if a red gorpsch AND a pink elephant
GORPSCH —— are near their respective detectors.
DETECTOR Suppose we want to modify the above

circuit to light the lamp only if we
have a red gorpsch AND NOT a pink elephant. Go through the following
thought processes:

1) We must have a logical AND. Choose a 7408 AND gate and draw
it in the middle of the page.
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1 —

2) The output polarity of the 7408 matches the input polarity of
the lamp driver so they can be connected,

3) The output polarity of the red gorpsch detector matches the input
polarity of the 7408 AND gate so these points can be connected,

PED

LD

4) We know we need a logical NOT operation on the output of the
pink elephant detector. Draw it.

PED —— 0

5) Now we need an inverter to change the polarity of TE to the high
required by the AND gate. :

PED A

RGD

This completes the circuit.”
Let's repeat the above example using the 7400 AND gate.

1) Place the 7400 in the middle of the page.
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To—

2) The 7400 output doesn't match the

driver. It must be changed to the pol
driver.

input polarity of the lamp
arity expected by the lamp

D—>—{
1

3) The rest of the c
Let's repeat the abov

a)

ircuit is identical to the first example,
e example using the 7402 AND gate.

qa—

Q._____j

b) The output of the 7402 matches the in
lamp driver--connect them.

put polarity of the

D—
LD
q

Pink elephant detector has to have a slash

¢) The output of the

to create PE, The resulting polarity matches the input of the
7402, )
PE_/TFE
PED /

D

RGD

d) The polarities of the RGD and th

e 7402 don't match so we must
insert an inverter to change the

polarity of the RGD.

/ .
PED YA

07_____._.' L D
RGD “““DO\_Q_*—
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THE BOOLEAN ALGEBRA OF THE AND GATE

There are several fundamental truthsg about the AND gate which can be
neatly summarized by boolean algebra. This is the algebra of binary logic.
In all of our previous work we have considered these two values to be H and
L voltages. One can conceive of other digital logic Systems where the

are concerned with g relay contact being OPEN or CLOSED.. Boolean algebra
abstracts all binary systems by defining two logical variables 1 and 0.

The boolean 1 and 0 can then represent H, L voltages or relay contacts
being OPEN or CLOSED. A boolean 1 or 0 must not be confused with an ordj-
nary numerical 1 or 0, Instead a boolean 1 is to be interpreted as 3
logical TRUE and a boolean 0 as a logical FALSE. We have already discussed

voltage. An output or input without a circle is defined to be a boolean 1
for an H voltage. The same convention holds for input polarities.

truth table:

Each of the AND gates previously described has an identical boolean
truth table<when the input voltages are interpreted asg boolean 1's or 0's
according to the graphical symbol. Let us consider all of the two input
AND gates and prove this statement for all of them.

HM O o>
O olw
O o ol

L
= L
H
H

Since all of the inputs and outputs are non-circled, a boolean 1 is to
be interpreted as an H voltage. If the above truth table is rewritten in
terms of 1's and 0's the boolean AND truth table results.

tage truth table using an H = l-for inputs A, B and
L =1 for Y. "Again you get the standard truth table for the boolean AND.

The 7402 gate shown on the following page is left as an exercise for
the reader.
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Now for some boolean algebra. The important theorems are listed below:

A «-B=38-.A Look at the truth table for the AND. The only case where
A . B could possibly be different from B . A is if B was
different from A. In other words A = 1 and B = 0. From
the truth table we see that 1 - 0 = 0 and also 0 . 1 = o,

QED.
1l -1=1 Verify by looking at the last line of the truth table.
1 -0=0 Verify by looking at the middle lines of the truth table.
A1 =A ifA =0, 0-«1=0

if A =1, 1 +-1=1 QED
A-0=0 if A =0, 0-0=0

if A =1, 1-0=0 QED
A-A=2A if A =0, 0-0=0

if A =1, 1.1=1 QED

The last theorem requires a result from a logical NOT operation. The boolean
algebra of the NOT operation is so simple it was not covered in that chapter.
These results are:

1
0

0
1

non

Now we can state the final theorem on the AND.
¢

A-A=9 ifA=1, A .

if A = A

0
0 QED

ton

[}

>

1 -0

0-1
The power of boolean algebra is it allows us to formulate these general

results independently from the particular type of logic we are discussing.

Although these results are very simple you should memorize them since they
will form the basis of some gate simplifications later on.
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(4) THE LOGICAL OR

The definition of the logical OR is:
THE OUTPUT WILL BE TRUE IF AT LEAST ONE OF THE INPUTS IS TRUE.

Again the definition of true can be obtained from the symbol for the
OR gate. Small circles correspond to L voltages.

The common OR gates and their IC catalog numbers are:

NAME SYMBOL CAT, # BEHAVIOR
2 input OR 7432 Y will be H if A OR B
gate (or both) is H
—d
2 input OR O 7408 Y will be L if one OR
gate Q more of A, B is I,
2 input OR :::i:::::}—~— 7400 Yw:i'l be H if one OR
gate more of A, B is I,
—0
3 input OR —0 7410 Y will be H if one OR
gate o more of A, B, C is L
O
4 input OR (‘ 7420 Y will be H if one OR
gate '; more of A, B, ¢, D is
L

9 .
8 input OR 7430 the output will be H
gate if one OR more of the
inputs are L

As for the AND gate we can write a truth table for the OR gate. The truth
table is an equivalent way of defining the device. Consider the 7432

A B |y
L L |L
L H|H
» H L |H
H H |H
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Note that the symbol emphasizes the last three rows of the truth table.
This says the output will be true if either OR both the inputs are true.

ware and need an OR gate you are not explicitly concerned with the first

Let us consider some simple examples using OR gates:

Draw a circuit using a 7432 gate that will light a lamp when
I have either a red gorpsch OR a pink elephant,

1) Since the OR gate is the central part of the problem draw
it in the middle of the page

S

— ) >~ [=]

RGD

2) Since all polarities match all connections can be made directly.

PED . ,

RGD

Draw a circuit using a 7400 gate that will light a lamp when we
have either Nor 2 red gorpsch OR a pink elephant.

1) Lay out the circuit graphically, indicate polarities on each symbol.,

— 7> [

RGD

S

-
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2) The polarities of the 7400 output and lamp driver match--connect

them.
I>— .

3) The polarities of the pPink elephant detector and the input of the
7400 don't match. Insert an inverter to "match up" the polarity.

S g S

4) Take care of the NOT operation on the red gorpsch line. This
means a slash must be put on the output line from the red gorpsch
detector. Remember the meaning of the slash--polarities must differ
on either side of the slash. This is already true so a director
connection can be made.

PED ————“—~—[:>X¥~—W

/

RGD 7

PED

RGD

RGD e

] LD

Build the same circuit using the 7402.
THE BOOLEAN ALGEBRA OF THE OR GATE.

The boolean definition of the OR gate is shown by the following truth
table:

E
truth table when the input and output voltages are interpreted ag boolean
1's and 0's according to the symbol. Let us prove this for the two input
gates.
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input 1=H

output 1=H

input 1=L, A
1

!

Y
1
1
1
0

B
1
0
1
0

1
0
output 1=H 0
Note that the order of the lines in the boolean truth table has been

scrambled from the formal definition given above. This of course does not
matter since the output depends only on the input combinations.

L

A L
) H
H

The student should do the same exercise for the 7408 OR gate.

input 1=H A

B
L
H
L
H

Y
H
L
L
L

= O~ oW
Ll e =) )

0
0
1
1

output 1=,

Let us consider some boolean algebra for the OR gate. The symbol for
the boolean OR is a +, This should not be confused with the arithmetic
pPlus. Since in digital logic we deal far more often with the OR than with
the plus we give Plus a special symbol (+). Thus:

A+ B means A OR B
A (+H) B means arithmetic sum of A and B

The theorems for the OR are listed below:

A+B=B+A This can be verified by looking at the truth table defining
the logical OR

0+0=0 First line of definihg truth table.
1+0=1 Second and third lines of defining truth table.
A+0=A if A =0, - 0+0=0
ifA=1, 1+0=1 QED
A+1=1 if A =0, 0+1=1
ifA=1, 1 +1=1 QED
A+A=A if A =0, 0+0=0
ifA=1, 1+1 =1 QED
A+EKE=1 if A =0, 0+1=1
ifA=1, 1+0=1 QED



~

25

DeMorgan's theorems : These are two very important theorems which you
g y

will use so often they will become automatic. In each case we

will prove

them by means of truth tables which is not the most sophisticated proof but

is the simplest. Further it will give you more
truth tables.

THEOREM 1: A B = A+3

PROOF a) Form the truth table for A -
b) Complement the column A - B
side of the above equation.

A .B#AX B which you should prove by filling
A . 3B.
A B ABI! A.B
0 0f o0 1
0 1 0 1
1 0 0 1
1 1 1 0

A B A BI|A¥
0 o] 1 11 1
0 1|1 o] 1
1 oo 1] 1
1 110 ol o

First Theorem.

THEOREM 2: A+B = A -3
The proof proceeds in the same fashion.

|

| A+Bl AFB|A-3
0] 1

=Mook
= O HOIw
O O F >
O = o ~lw]

1
1{0}o0
10,0
11 o01lo

What relationship do DeMorgan's theorems hav
in words the theorems say:

IF ALL INPUTS AND OUTPUTS ARE INVERTED, AND and 0

Symbolically:

experience handling boolean

B.
to obtain the left

Note that complement is another name for the logical NOT. Note that

in the truth table for

e to AND, OR gates? Said

R WILL BE INTERCHANGED.

D= D-D
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This is true as we'll show by
using voltage truth tables:
The AND symbol emphasizes the
last line of the truth table
(the AND line) and implies the
other three lines.

Now let us take the first three lines of the same voltage truth table
(the OR lines) and represent their behavior with a graphical symbol.

A B

: T
L H = ’

H L Q

H H

We see that the AND and OR symbol emphasize different parts of the same
truth table. Of course either symbol implies the entire truth table. Still
as designers we will be thinking of AND or OR functions. YOUR SYMBOLS
SHOULD REPRESENT THE TYPE OF GATE (AND or OR) THAT YOU WERE THINKING OF WHEN
YOU DESIGNED THE CIRCUTT. THE SYMBOLS WILL IN TURN INDICATE THE POLARITY
REQUIRED TO MAKE THEM ACT THE WAY THEY ARE DRAWN.

This concept is so important that we will illustrate it for all of the
commercially availgble two input gates.

CAT. # SYMBOL VOLTAGE TRUTH TABLE EQUIVALENT SYMBOL
7400

7402

4 d

7408

I
T
!
¥
@
\I)
|
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7432

-

THUS WE CAN USE ONE AND THE SAME GATE AS A LOGICAL AND or A LOGICAL OR BY
GIVING IT INPUTS OF THE PROPER POLARITY!

This is not restricted to two input gates.

For example the 7410 can be
represented in two equivalent forms.

——

—

The student must learn to "'change gears"automatically when thin
AND or OR gates, since this will allow you to simplify circuits.

king of
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(5) LocIc EQUATIONS

As you have seen we have devised g very nice graphical way of repre-
senting digital logic circuits. The pictures tell us what operations (NOT,
AND, OR) are taking place and also what polarities are at any point in the
circuit. This pictoral Tepresentation called a LOGIC DIAGRAM is the most
useful way of portraying a circuit that ig already built.

Unfortunately it is a rather cumbersome way to do the initial design
of a circuit. A more compact way to represent the boolean operations is
required. This information can be represented by boolean equations. Again
we will find that they are tailored to certain applicationsg. They are use-
ful precisely because they emphasize certain things and suppress irrele-
vant items. One thing suppressed is voltage polarity. Indeed, from a
preliminary design viewpoint we are interested in implementing AND's,

OR's, NOT's, etc., and are not concerned with polarities. Of course when
it comes time to build or debug a circuit then polarities are all impor-
tant. At that point a logic diagram will be needed. This chapter will
be devoted to translating logic équations to logic diagrams.

The symbols used to write equations are divided into two classes:

Variables: These are simply the names of signals. Examples would be:
A, A39, AC LOAD. A superficially more complex name would be AC=0.

. logical AND

+ logical OR

- logical NOT (this is an overscore)

( ) parenthesis (used as in ordinary algebra)

= equals (used as in ordinary algebra unless it is
part of a name) '

Operators:

Let us consider some simple examples:
F=A.238

An equivalent way of repre-
senting the same information
would be a logical truth
table: '

If you want to build a »
logic circuit to generate F you must provide two additional pieces of
information:

a) What type of AND gate you will choose from the IC catalog
b) What polarities A, B, and F will be represented by.
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Suppose the gate is a 7400 and TRUE for A, B, F is represented by H,
Now the circuit can be drawn

D>

Another example: F=@A+3B) - (c +D)

A
8

The parenthesis tells us that A + B must be generated as an inter-
mediate signal, as must C + D. Then these two intermediate signals must be
ANDed. Again suppose F, A, B, C, D are all TRUE when H. Also suppose the
7402 is chosen for the gates. All three gates are 7402's. We have used

) DeMorgan's theorem to
~I represent the same
—0 gate in its most
[::::>_—-__ s natural form at each
place in the circuit.

Such simple examples do not really express the power of boolean equa-
tions. Before we can 80 to more realistic examples it ig necessary to
consider the implied priority of the different operators. Consider:

F=A-+-B+¢
This could mean:

F
F

A+ (B +0) (+ has more priority than )
A - B) +¢ (- has more priority than +

non

The proper interpretation is the second. We can formalize this in
a table of priorities (hierarchies) the most "powerful" operator being at

the left: NOT AND OR

—t——

) . +

Let us now derive a circuit that will generate F = A * B + C where
TRUE is represented by H and we choose 7400 gates for implementation.

s I S
«—>

Let us implement F =
by F =H, A = L, B=H, C

- B+¢ where TRUE for each variablg is defined
L.

Again let us choose 7400 gates for implementation.
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AN

34—0[\ ' DD\_D\ .

This logic diagram looks very different from the preceding one. Yet, it

is the same boolean equation that ig being implemented. The difference is
caused by the differing polarities chosen to represent TRUE. Still another
factor that could change the appearance would be to choose a different gate
to implement the circuit. Suppose that 7402's were chosen and the polar-
ities are the same. We see that it takes two more inverters to implement
the same boolean equation. It is generally true that one type of gate will
be more '"natural" for g given situation. The designer should exploit this
by choosing the type of gate which minimizes the number of inverters.

la) A +0 = A 1b) A = 1 =4
2a) A +1 =1 2b) A " 0=09
3a2) A +A =4 3b) A . A=A
ba) A +X =1 4b) A - K =9

These theorems have already been discussed in the chapters on the
logical AND and OR. They should be at your fingertips since it is unfor-
givable to convert one of these equations to gate form.

52) A (A +B) = A 5b) A + AB= 7
Note that when two single letter variables such as A, B are written side
by side the AND is implied thus AB = A . B, This is true only if the
variables are named by single letters.

These boolean identities can be proved by truth tables. For example
5a): ‘

_ A B | A+B|A(A+B)
We see that the columns 0 0, 0 0
for A and A - (A + B) 0 1)1 0
match QED. . 1 Ol 1 1
1 1iy-11 1
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Alternatively they could be proved using boolean algebrs.
5b):

For example
A+AB = AQ + B) = A1) =

= A
6a) AR + B) = AB 6b) A +EB =A + 3B

6a) is easy to prove using boolean algebra:

A(K+B)=AZ+AB=0+AB=AB

72) KB = X + § 7b) A + B = A -

These are simply DeMorgan's theorems.

8a) AB + A = A

This is an important theorem which is th

e basis of the Karnough Map sim-
plification. Its proof is simple:

AB +AB = A(B +38) =4 . (1) = A,
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(6) USEFUL STRUCTURES BUILT FROM GATES AND INVERTERS

The human mind works best when irrelevant material can be suppressed.
We have already seen how each of our various ways of representing digital
logic emphasizes certain things and de-emphasizes others. Consequently,
we use the description that best suits the task at hand.

The next step up this ladder is to combine gates into useful struc-
tures. Once we do this we can give this structure a name. Once named the
human mind can then use the new structure easily. We will describe and name
most of the common items used in computer architecture.

A) EXCLUSIVE OR
‘This is a logic function of two inputs and one output. The defini-

tion can be given either by a truth table or a boolean equation. Ve will
do both, but we must first give it a boolean operator symbol which is 6,

A B|ASB
which is equivalent to 0 o} o0
A DB = AB + #B 0 1] 1

1 0] 1

1 1] 0

From the truth table we can see that it is identical to the logical
OR except it excludes the case A = B =1,

The exclusive OR is used enough to warrant its production as a special
integrated circuit, the 7486. The graphical symbol is modified from the
normal symbol of the logical OR: Note also that it has only two inputs.

a) Use as a controlled inverter: This technique should be in every
designer's bag of tricks, especially since it is so simple. Suppose
we wish to pass a signal (A) unchanged when a control signal (C) is
0 and invert A when the control signal is 1.

This is the exclusive OR definition as we can show from the truth

table:
C__A|Agc
when C=0 AdC = A 0O 0| o
when C=1 A3C =& 0 1 1
1 0 1
1 1 0

b) Use as a comparator: Look at the truth table again and you
will notice that the output of A DB is g 1 only when A # B.
Therefore, all we have to do to see if both bits are the same is
take the logical NOT of the output.
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8 (L only when A = B)

c) Use as a parity generator/checker: Parity is a reliability
feature that is used on most computers. The philosophy behind it
is to try to give an automatic warning when some component of the
.computer fails. One common device that is parity checked is
memory. The common failure mode of memory is that one bit will
always come back a 0, the other failure mode is for it to always
come back a 1. Some examples are:

INPUT . OUTPUT
good 0011 1010 0001 0011 1010 0001
memory
bad memory 0011 1010 0001 0011 1010 0000
: ’ (last bit
always 0)
bad memory 0011 1010 0001 1011 1010 0001
: (first bit
always 1)

Of course with a good memory you will always read back what
you stored. When the memory goes bad you will either "PICK yp"
or '"DROP" a bit. How could you check for this? Consider the
original word stored in memory O00Ll 1010 0001; it has 5 bits =1.
Note that 5 is an ODD number. If the last bit is dropped the
number returned from memory will be 0011 1010 0000 which has 4
bits = 1 which is an EVEN number. If a bit is picked up, i.e.,
1011 1010 0001, 6 bits = 1, which is STILL an even number.

Thus a bit pickup or drop causes the number of bits to change
from ODD to EVEN.

SUCH AN ERROR IS CALLED A PARITY ERROR.
Of course we will not always be storing numbers with an odd

number of bits; for example we might store 0010 0011 1000 which
has 4 bits =1 (EVEN), and a bit pick up or drop will result in

33



a number with an ODD number of 1's which is still a parity error.
How do you distinguish these cases? You append an extra bit (the
parity bit) to the original number so the total number of bits
(including the parity bit) is odd. For example s

0
1 is oDD

1) 0011 1010 0001 is already ODD parity bit
final number is O 0011 1010 0001 total bits
\‘W -

nmn

parity bit original number

2) 0010 0011 1000 has an even number of 1 bits; therefore
the parity bit = 1
final number is 1 0010 OOll_}QQQ total bits = 1 is ODD

parity bit original number

Now let us send these 13 bit numbers to a faulty memory .
The parity bit has been appended so that the number of 1 bits
is always odd. Now a bit drop or pickup will always result in
an even number of 1 bits.

If we had some way of looking at a number and telling
whether it had an odd number of bits we could build a circuit
that would detect a parity error.

Look at the exclusive OR truth table again. It has two
input bits. Its output is a 1 only if the number of 1 bits in
the input is ODD. :

A B | AGB
0 0 ‘ 0 only 1 bit of A or B is
0 1 1 =1 (1L is an odd number)
1 1
1 0

0
1

Thus if we have a 2 bit number (A0, Al), we can calculate the
parity bit to append to it (P, AO, Al) with the following circuit.

AO —— P P =H if A0, Al = L1,
4 or A0, Al = H H

We can ship this modified number P, AG, A1 to a faulty memory
which may be picking up or dropping a bit. How do we tell? Ve
take the number we get back from memory and use exclusive OR's
to see if it still has an ODD number of bits. If yes, we did
not have a parity error. The circuit to check this is shown
below:

([
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f P S—
iy [ S—

This is a very simple parity checking circuit in that
the original number A0, Al was only 2 bits. A more typical
width would be the word size of the computer. TFor the PDP-8
this is 12 bits. How would you generate the parity bit to
append to the 12 bit word? Hint: shown below is the circuit
to generate the parity bit for a 4 bit word.

D
R

B) THE MULTIPLEXOR (DATA SELECTOR)

The data selector (often abbreviated MUX) is egsentially an elec-
tronically controlled switch. Its function is to take many inputs, select
~only one of them, and route the selected one to the output. It is exactly
analagous to a mechanical rotary switch as shown below:

INPUT 0 —o
INPUT 1 ———— s«

e CUTPUT
INPUT 2 —e

INPUT 3 ————e
With a manual switch the position is controlled by a knob. MUX's
act like the rotary switch but are made of AND, and OR gates. This makes
the selection process very fast since gates switch in just a few nano
seconds. There are either 1, 2, i, or 4 switch selection lines in IC
MUX's. Therefore, there can be 27 =2, 22 = 4, 23 = 8, or 24 = 16 dif-
ferent inputs. We will describe these in turn:



1) 2 INPUT MUX catalog number 74157

STRO 8 £

Ly

S

Since it is a special purpose circuit its symbol is a rec-
tangle. A, B are inputs which can be switched to Y by means of
the control line S. The strobe line is also important; unless
it is L none of the inputs are connected to Y. All of the
following discussion assumes strobe = T,,

When S = L, A is connected to Y. When S = H, B is connected
to Y. For the moment ignore strobe; what combination of AND, OR
gates would implement this circuit?

I

Convince yourself that this circuit does indeed duplicate the
above description. How can we implement STROBE? (Remember
when strobe = H, all inputs are disconnected from Y).

A o D “"‘—\\>\

S 4

——— //
S7R0 3‘<‘~—~—4> ~—-’ o
& —

To get the actual circuit for the 74157 we have to consider
one obscure fact. Each gate input absorbs some electrical
power. There are four identical two input MUX's per IC package.
If we simply took four of the previous circuits and hooked all
four select (S) lines to the same pin we would draw four times
as much power from the gate which generated the § signal else-
where in our computer. This would LOAD that gate excessively,

36



Therefore, Wwe use two inverters on the S line. We take our
select signals off of these outputs. Now we draw only one
unit of power from the gate which is generating S.

/A -
7
ﬁ /Y
/8 >

2A N\

~

2y

28

3 A |
/
, .
& . .
| v

vd

ke

S -
STRO & [,“._o{>‘_“

Several comments are in order:

a) AND, OR gates don't look anything like a rotary
switch but they will simulate it, and much faster too.

b) You buy four of these switches per IC package at
a cost of roughly $1.50, .

¢) It is much easier to think of a MUX than the gates
inside the MUX. After all in a computer we are going
to have to route information inside the machine. Even

though this is done by gates they clutter up the picture.
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d) We could have described the MyUX by means of equations,
i.e., Y = A-STROBE-T + B*STROBE-S.

e) We could have described the device by means of a
truth table:

STROBE S A B Y
Note the use H X X X L
of X L L L x 1
X = irrelevant, L L H X H
that is H or I, L H X L L
L H X H H
2) 4 input MUX catalog number 74153
I Srélif‘ A NOTE: the four inputs are
called CO--C3. The select
— o lines are now called A, B,
—decs . Strobe has the same meaning
Yi— as before.
—C2
—C3
L s s
Description: , }

a) Y = (CO'A*B + C1-B-A + C2°'BA + C3+B-A) * STROBE
b) Truth table

STROBE

Ll ol ol S R S
Sajsag sl <ol ol N S e )
IomE e e e e
Q
NNKNNNEHNO
(@]
PP DD e el
o 5
SN B R R RIS
aQ
OO B4 B B b b
B - A T

€) As an exercise draw a logic diagram using AND, OR gates that
implements a, b above

3) 8 input MUX catalog number 74151
4) 16 input MUX catalog number 74150

These are identical devices to 1 and 2 except for the increased

38

number of inputs. Figure 6.1 is the logic diagram of the 74151 MUX.
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NOTE: Y outputs are circled on 150, 151
Y outputs are uncircled on 153, 157
W output on 151

One last point: Some authors use a triangle to represent a
MUX. For example the 74153 would be shown as:

€O
C/o—_—
Y
C2 v
cz A g
A , :
C) THE DECODER SR

Often we will have to look at a collection of bits and pick out a
certain combination. For example in the laboratory computer project the
left three bits of a command word tell what kind of instruction it is. Let
us label this three bit field IRO, IR1, IR2. The possible combinations
and their meanings are:

INSTRUCTION

AND accumulator and memory

TAD accumulator and memory

ISZ increment and skip if zero

DCA  store and clear accumulator

JMS  jump to subroutine

JMP  jump

I# input output instruction

‘NMR  non-memory reference instruction

[l
»—-v—u—ll—-oooo‘/g
=~
HFHROOrRHROOX
-
=~
r—-ﬂor-ox—lor——\o";g

Now the question is how do we tell when we have a given instruction? This
can be most easily shown by a boolean equation.  For example :

NMR = IRO*IR1-IR2 since NMR is the only instruction with all bits TRUE.

Satisfy yourself that each of the following equations is correct:

I = TRO.IRL-TR2
JMP = IRO.IR1.IR2 This process is called
instruction decoding
JMS = IRO-IRL-IR2 and the circuits to
- accomplish it are
DCA = IRO-IR1.IR2 called decoders.

ISZ = TIRO.IR1-IR2
TAD = IRO-IR1-IR2

AND = TRO.IR1-IR2
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Let us build a decoder to detect the presence of the DCA instruction.
Assume that IRO, IRL, IR2 are TRUE when H and DCA will be true when L.

DCA = TROsIR1-IR2

TR 2
R/ -

ZFo >o~ a
For JMS = IRO:IR1-IR?2

ZF o *— \
g /

—

Decoding all eight instructions would take six more circuits analagous to
the two above. The integrated circuit manufacturers have been nice enough
to package all eight of these circuits into one IC.

z
T

The most common decoders (and therefore the cheapest) are the 7442,
which decode 10 outputs and the 74154 which decode 16 outputs. Both are
used in your lab kit. A schematic of the 7442 is shown on figure 6.2. The
schematic of the 74154 is identical except it has six more gates
to decode the input combinations from 1010 - 1111. It also has a pair of
enable terminals which must both be low to activate the decoder.

-
The enable capability of a decoder is very important. For example we
discussed the use of a decoder to generate a unique signal for every com-
mand. It should be intuitively obvious that we would want to look at
these signals only during the execution portion of a computer cycle. In
other words we want to enable the instruction decoder only during the execute
cycle.

At first sight the 7442 does not have this capability. However, if we
choose to look at the first eight outputs only, then the D input will serve
as an enable. You can see this by examining the decode gates for outputs

0 - 7. Every one of these gates has a D input. Thus they will be enabled
only if D = 0,

The student should look in a commercial IC catalog (such as the Texas
Instruments TTL data book) for the logic diagram of the 74154.

There is one more very important combinatorial circuit, the binary
adder. To allow adequate space for its discussion we have devoted the
entire next chapter to it. ‘
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Fig. 6.2
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(7) ADDITION

A computer that can't add obviously isn't worth much. Tt is fairly
easy to build a combinatorial circuit to add- binary numbers. This chapter
is devoted to a slow and easy introduction to the process and will culminate
in an actual circuit that will add two numbers.

In the introduction we saw how a decimal number can be represented
using only O's and 1's. We call the resulting representation a binary num-
ber. To refresh your memory we will give the binary representation of
several numbers:

510 = 1012 710 = 1112
1710 = 100012 v14310 = 1000 11112
3410 =10 00102 5310 = 11 0101,

We know how to add two decimal numbers but let us review the process since
we can use it as a guide to binary addition.

Add without carries:

34 Here we can add the 5 + 4 and g8et a number smaller than
+ 5 10; therefore, there is no carry into the 10's column.

39 '

27 Again the sum in each column is less than 10; there are
+ 61 no carries so each column can be added independently

88

Add with carries:

7 Here the situation is slightly more complex. The largest
+ 5 digit we can have in any column is 9, but 7 + 5 jig larger
12 than 9. We solve this by a carry into the 10's column

which says 7 + 5 = 10 + 2, Remember the carry = 10 and
the 2 is how much we have to add to the 10 to get the answer.

It is somewhat unconventional but we can show this very nicely in the
following fashion:

~
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Consider more complex examples:

a)
b)

c)

a)
b)
c)

69 567 4567

+5 2 +2 41 +54 33
erEp so=)-sm Gooooy-sm
+ + + ++ F ++ + F F
SIGH o o OCS@?C@
|y§%§? Wg?n - ufyj%i;u
~f) oy G;<3'4 ngﬂiﬁigm
+ + + + + + ++ + ¥+
on o N~ omn g e~
+ + : + + ++ ++
o N © oo
The rules describing this process are:

The number of different digits is 10 (0, 1, . . . M.

If the sum in a given column is less than 10 there is no carry into
the next column. ,
If the sum in a given column is 10 or more there is a carry into the

next column.

Analagous rules hold for binary addition:

The number of different digits is 2 (0, 1)

If the sum in a given column is less than 2 there is no carry.

If the sum in a given column is 2 or more there is a carry.

To show how similar decimal and binary addition are we will do the

same example side by side.

7 =111 = 101
10 1 2 . 510 2
7 111
+ 5 +101
Coreiy st Crso—sW 1100, =12
¥ F ‘ : F+++
o SIS
w/n/n/n
/i P Pg
" e
g + + + +
o~ O —HO
+ + o+ +
O ot
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( 250 = 10, 210 * 270 =419
2 ' 10
(& s (oo )—sum 1002 B 410
- ¥ ¥ F :
o o (@}
n nw/n n
+ ++ +
~ O - O
+ +
O
17., = 10001, 910 = 1001,
17 10001
+ 9 + 1001
: + ++ ++ F N
© , cooco@
nw/n tunnuw/n
) Gﬁ{f oo o~
( ¥+ ++ ++ +
o o O OO
+ ++ + +
— —1O OO

In the preceding examples we assumed you knew the addition
tables. For binary addition the tables are very simple:

carry from preceding column 0 0 0 o0 1 1 1 1
0 0 1 1 o o0 1 1

+ B 0 1 0 1 0 1 o 1

SUM 0 1 1 o 1 0 0o 1

6 0.0 1 o0 1 1 1

carry to next column

This same information is more usually arranged in a form that looks
like a truth table. C; represents a carry into this column. C, represents
a4 carry out of this column. :

C;i A B S Co

0 0 0] 0 o0 IMPORTANT PROBLEM!

0 0 1{1 o ‘ ‘

0 1 o0{1 o Prove : S=A@B@%

0 1 1|0 1

1L 0 oj1 o cO=A-B+A-ci+B-q
. 1 0 17,0 1 1
& 1 1 olo 1 =A - B+C; (A+B)

1 1 111 1
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These equations can be translated to hardware as shown below:
An I ‘\\\‘ \ —
Bh e J , >‘““"“‘”“_"‘ ) h
) ] D=

I

We have changed the nomenclature slightly. A, B have been subscrip-
ted with a small n to signify that we are working with column n of a
binary number. C, denotes the carry into column n and Co+1 denotes the
carry out of this column.

Let us enclose the above circuit in a special symbol box and show how
adders can be connected together to add two 3 bit numbers. Label the
columns as follows:

A2 52 Al 2/ £o

Ao
A TR T R
i 4 4 4
;cou7’ I couvr i cour C/Ml;**_%h

A i

S/ So

Note that Cop = 0; therefore it is tied to ground to make it always L.

One might think that the full adder would be available as an IC. 1Indeed
it is; but a more common IC (7483) contains 4 full adders in a single pack-
age. The carry lines are internally connected so there are only two carry
lines; C in to the 4 bit group and C out of the 4 bit group.
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SUBTRACTION

We could go through an analagous procedure to derive the algorithm for
subtraction and finally wind up with hardware to do it. Fortunately we can
use an adder to subtract. We will base our discussion on an ordinary elec-
tronic calculator with 6 digits of accuracy. If one is not available you
can think of an imaginary 3 digit calculator. Our immediate goal is to use
such a calculator to subtract by using only the add key.

To do this we need to define a complement number. In the following
discussion we will assume our imaginary 3 digit calculator. If you have an

electronic hand calculator by all means use it to do the same examples.

To form a 3 digit complement of a number n, subtract it from 1000.

Complement of 237 = 1000 - 237 = 763
Complement of 64 = 1000 - 64 = 936
Complement of 700 = 1000 - 700 = 300

Let us subtract first using normal arithmetic and secondly by addition
of a complement.

514 514 514 514

- 237 + 763 - 64 + 936
277 1277 450 1450

In each case the answer obtained by complement addition is exactly 1000
larger than the number obtained by normal subtraction. This of course must
be true since a complement is formed by subtraction from 1000,

514 + (1000 - 237) = 1000 + (514 - 237)

We see that we could do a subtraction very nicely by complement addi-
tion if: a) we had an easy way to reject the 1000,
b) we had an eéasy way to independently form the complement.

Fortunately the first is automatic. We assumed we had only a 3 digit
calculator. The 1000 lies in the fourth column so it is automatically
discarded. .

The second problem is only slightly more complicated. We need some
way of subtracting the number from 1000 that is so easy that is does not
burden the process. The main problem in subtraction for humans is the
borrow problem. If only we could devise a way to subtract column by
column without a borrow we could write the complement almost as fast as we
could write the original number. There is an easy way to do this:

1000 = 999 + 1 1000 - 237 =‘(999 - 237) +1

Now it is impossible to get a borrow in subtracting any three digit num-
ber from 999. You can see this by considering only one column at a time.



48

The largest digit you can have is a 9 and a 9-9 = 0 with ho borrow. Since
we have no borrows we can now subtract from right to le ft or left to right.
Let's use this procedure to form the complement of some numbers.

Complement of 237: 9 9 9
- 2 - 3 -7
7 6 2 + 1
So to subtract 237 from 514
add 514 then add 1 1276
+ 762 + 1
1276 1277

L— automatically discarded

NOTE: We have used only the addition process. (We assumed an independent
easy way for forming complements).

Complement of 64: 9 9 9
: -0 -6 -4
9 3 5 + 1
514 514 add 1 1449
- 64 + 935 + 1
450 1449 1450

automatically discarded

We call the number obtained by subtracting from 999 the NINE's complement.
We define the number obtained by subtracting from 1000 the TEN's complement.
Thus: TENS Complement = NINES Complement + 1

Again the reason for breaking the tens complement up into two steps is the
ease of doing each step.

Now let us see how we can handle a calculator of more than three
digits. The crucial thing is the automatic discard of the one to the left
of the difference:

For a 3 digit calculator use 1000 = 103

For a 4 digit calculator use 10000 = 10%

For a 6 digit calculator use 1,000,000 = 100
For an n digit calculator use 1,000 . . . =10"

‘ Now that we have shown how complement addition works for decimal num-
bers, we can move to binary numbers. The process of taking ’
complements is even easier in binary. By analogy with the calculator exam—
ple if our binary computer has n bits the complement will be formed by
subtracting from 27, Definition: 2's complement of x = 2" o ok,

For example suppose we have a 3 bit machine:
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7 2's complement of 5 = 1000
-5 - 101
2 11
7 111
-5 +11
2 1010 0102 = 210

T

automatically discarded since have only a 3 bit machine.

We will find that it much easier to take the complement in two steps as
we did for decimal numbers.

23 = 1000, = 111 +1 111
- 101
010

NOTE: The final result is a bit by bit NOT (complement) of the”denqminator.;'

Definition: The ONE's complement of a binary number is formed by éhéngihg‘"
each 1 to a 0 and each O to a 1.

TWO's complement of X = ONE's complement of X + 1.

As you can guess the ones complement of a binary number is very easy
to generate electronically. Further the extra 1 to be added can be generated
simply by turning on the carry in to the right mdst adder (for addition it

is always turned off).

We can show this process by means of a logic diagram.

-
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(8) ARITHMETIC UNIT

We have studied most of the combinatorial elements required for a
computer. The last and most important one will be covered in thisg chap-
ter. It is called the arithmetic logic unit (ALU). TIts function is to
take data words and perform arithmetic operations (such as add) or logical
operations (such as AND) in response to instructions from a program stored
in memory.

Building an arithmetic unit with early integrated circuits was quite
a chore since only simple gates and inverters were available. Such IC's
are called SSI (Small Scale Integrated) circuits. Technology has progressed
to the point where more complex circuits can now be manufactured. MSI
(Medium Scale Integration) contains circuits of approximately 100 gates
per IC. LSI (Large Scale Integration) contains approximately 1000 gates
per package. The computer you will construct uses all three classes of
IC's. SSI is used for implementing simple logic equations. LSI is used
in the memory and MSI is used to build the arithmetic unit.

The MSI circuit you will use is a remarkable device. It will be
worth studying it in detail since it is the heart of the computer. The
device is the 74181 which is capable of performing all possible logical
operations (AND, OR, etc.) as well as arithmetic operations on two 4 bit
operands. These devices can be strung together to form arithmetic units
which will handle more than 4 bits. Since our computer is a 12 bit machine,
it will require three 74181's. The symbol for the device is:

O
— Ao cov7
A7
A —A2 . Fﬁ_“)
—] Az i F
F2 —
— 20 =
& k4 .
— 42 ss ss ©
— 83 A3 2 ) o A
T T T T

A, B, and Cip are the inputs; F and Cout are the outputs. M and S are
control inputs which tell the ALU what operation to perform on A, B, and
Cin-

Since there are five control inputs 32 (25) different operations can
be performed by the 74181. These are broken down into two groups of 16
based on the value of M. When M = L it will do arithmetic operations
(adding) and when M = H it will do logic operations. You may wonder how
these can be 16 such operations since we have discussed only NOT, AND,
OR, and EXCLUSIVE OR. Let us imagine a '"black box" with two inputs A,
B, and one output F. The question we are asking is how many different
kinds of "black boxes' can there be. This in turn forces us to ask how



Boolean equation

do we know when we have a particular "black box," such as an AND gate.
The answer is of course by means of the truth table that the black box
produces. For example if we input all four combinations of A, B and
obtain this output on F:

A B |F
0 0 ]0
0 1 0
1 0 1o
1 111

Then we know that this particular black box is indeed an AND gate. There
are exactly 16 different possible truth table outputs as shown below:

A By Fy Ty F) Fy By Fg Fg F, Fg Fy B0 F R F13 14 Fis
6 00 O O O 0 0 0 o 1 1 1 1 1 1 1 1
0 1 0 o 0 0 1 1 1 1 0 0 o0 o0 1 1 1 1
1 o0}1o0 o0 1 1 0 o0 1 1 0 o0 1 1 0 o0 1 1
1 1 ] 0 1 0 1 o0 1 0O 1 o0 1 0 1 0 1 0 1
O ABAE A K-B B A3B A+B ATH AZB B A+B A A+B AB 1
Some bf these truth tables are familiar to you, for example:
F3 = A . F7 =A +B
F5 =B F12 = A
FlO =B
We will now define some of the others:
F8 = NOR (NOT OR) since FS =A + B
Fl4 = NAND (NOT AND) since F14 =A . B
F9 = COIN (COINCIDENCE) since F9 =1 only if A = B
Note that A ©® B =4 @ B The symbol for Fy is @ ,

The other entries are of little use and we will not bother to name them.
In any event they can be expressed by means of boolean equations, for
example : -
F2 =A *B

The 74181 is capable of outputting any one of these 16 truth tables
depending on the values of M and §. For example if M = H, S3 =L, S, = H,
S1 =H, Sy =L, then:

F =A0@BO
F) = A @38,
F2 = A2 G?Bz
F3 =A3 EEBB

51
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A circuit which will generate all 16 possible truth tables is shown below:

So____|

8 —

The operation of this circuit can best be analyzed by using boolean algebra.
Write the boolean expressions for X and Y and then note that X @ Y = XY + Xv.
Let us consider X and Y separately:

S3 S2 X =A-(S3'B + §2-B)
0 0 o0
0 1 AB
1 0 A
1 1 A
in detail:

: S3 52 A-(S3-B + 52-F)
0 0. A-(0‘B + 0°'F
A*(0 + 0)

A (0)
0

0 1 A-(0:B +1.B)
A*(0 + )
AB

1 0 A«(1'B + 0-F)
A-(B + 0)
A*B

1 1 A*(1‘B + 1°F)
A+(B + B)
A-(1)
A
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in detail:

Now if we write all
X and Y we get:

S2 _S1 Y=A + S1-B -+ S0-B

0 o A

0 1 A+ B

1 o0 B+

1 1 1

0 o A+0F8 +0-B
A+0L+0
A+0
A

0 1 A+ 0B+ 1.8
A+0+3B
A+ B

1 o0 A+ 1B +0-3
A+B+0
A+E

1 1 A+1F5+1°B
A+ (B + B)
A+ 1
1
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S3 s2 sl so| x1|v Z=X&Y =XY + Xy
0 0 0 0 0 A A = F3

0 0 ‘0 1 0 | A*B | A+B = F7

0O 0 1 o 0 | A+B | A48 = F11

0 0 1 1 0 1 1 = F15

0 1 0 C AB] A AB = F1

0 1 0 1 AB| A8 B = F5

0 1 1 o AB| A+B | AF8 = F9

0 1 1 1 AB] 1 A+B = F13

1 0 0 o AB| A AB = F2

1 0 0 1 AB|] A+B ADB = F6

1 0 1 o AB! A¥B | B = Fl0

1 0 1 1 AB; 1 A8 = Fl4

1 1 0 0 A A 0 = FO

1 1 0 1 A | A+B | AB = T4

1 1 1 o A | A+B | 58 = fg

1 1 1 1 A 1 A = F12

Some of the results in the Z column are easy to obtain:

For the first four note that 0 @ p = p _
For the last one in each group of four note that 1 P =F
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Also remember DeMorgan's theorems :

KF =
K5 =

Some of the others are not so easy. Let us do

83 _S2 sl so X
0 1 o0 1 AB  A+B

2 =X®PY =XY +%y

AB (A +B)

[

XY

]

AB (K -];) DeMorgan

AA (B B)

i

03B

]

=0

(AB) (A + B)

%l

]

6& + B) (A + B) DeMorgan
= AA +AB + BA + BB

0 +AB + BA + B

B (A +A+1)

]

n

B (1 +1)

il

B (1)

=B

Therefore Z =X @Y =XY +XY = 0 ®B = B

It is not essential that you be able to work through the other cases
if you are willing to accept them on faith. The essential things to note
are that the 74181 is able to do:

a)F=A'B d) F:K
b) F=A+3B
c) F=A

These are the only logical operations required in a PDP-8. More
powerful computers might also use A ® B, The 74181 has four circuits
identical to the last one to operate on each bit of the inputs.

We have said nothing of arithmetic operations in the 74181l. We
shall be interested in only one of the 16 possible, arithmetic addition.

54
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A full treatment involves the theory of carry look ahead addition and ig
referred to Appendix Al. We ask you to accept for the moment that you can
make the 74181 add by setting M = L, S3 = H, §2 = L, S1 =L, SO = H. When
you do so you force the 74181 to act as four full adders connected as

follows: . X
A3 83 Az 8, Ay 8 Ao & 971//5/
| W
1 .
coar FULL S FA - " FA ! F A o
(Cprt) ADDER (Ch>

F3 Fa F/ Fo

To add more than four bits 74181's can be hooked together in exactly
the same fashion as one bit adders.

Veg A

covT ——QChr# Chn DO Chhry Chf*‘““{’ch*“
'j‘ £ !

n Oy

n O—— (T

h)

This is an example of a 12 bit adder and is identical to the arith-
metic unit of your lab computer. The control inputs M, 83, 52, s1, sO
are not shown in the above diagram but are nonetheless implied. 1In fact
all three 74181's have their control inputs chained together so they will
all be doing the same logical or arithmetic operation at any given time.

The complete table of operations is shown below. The combinations
that are used in your lab computer are shown by @.
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Logical Operations Arithmetic Operations

L]
(o

H

P fd
A+ B

A+TB

minus 1 (2's complement)
A plus AB

(A + B) plus AB e

A minus B minus 1° A-B
AB minus 1

A plus AB

A plus B -—" /ﬁ‘/;’?
(A +B) plus AB

AB minus 1

A plus A" 2Ap
(A + B) plus A

(A + B) plus A

A minus 1 -

non
>

§1c>a >

n n
> o
] +
os] t
o onon

S

S
+
o

L
H
L
H
(n
'H

N

L

mn

]

[}
PR w
>}

+ 3
+ B

nn

i

l
]

M@ ) e m @) [
mwnnnn
>
&=
e () e o () |2
mnn

The results tabulated in the arithmetic column assume there is no

carry into the low order bit (rightmost Cin in the above figure). TIf thers
is a carry in simply add 1 to the results shown in the arithmetic column.

Note that most of the combinations are not used. You might be
tempted to build a more specialized arithmetic unit to provide only the
circled functions. Ironically such a specialized unit would be more com-
plicated since it would have to be built with many SSI gates and would
wind up taking many more packages than the 74181. Incidentally the thing
we strive for in a design is to reduce package count since complexity,
cost, and indirectly reliability are related to package count.

As you perhaps can sense we are getting close to a full tool kit of
IC's. There is one type left to consider--flip-flops which will be dis-
cussed in the next chapter.
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- the clock pulse is its rising edge;

.available at all times. These special- cLn

57
(9) FLIP FLOPS AND MEMORY

Up until now we have discussed strictly combinatorial logic. Remem-
ber its definition--outputs are a function of present inputs only.
Some thought should convince you that that alone is not sufficient to
build a computer. The essence of computing is the combination of old
data to yield new data. The mere use of these terms illustrates the
problem. Data must be stored so that it can be operated on; the new
results must then be stored for possible later use. How can we do this?
The answer is g flip-flop. Flip-flops can do many things
besides store data--count for instance. Nonetheless in this chapter we
shall discuss only one type of flip-flop which is used to store data in
the lab computer. We will do this so we can get a sufficient set of
building blocks to construct and discuss a computer. After we have covered
this we will come back to flip-flops in more detail.

The flip-flop we use for data storage is the 'D" (Delay) flip-flop.
Since it is a special device its symbol will be a rectangle as shown below:

D —— - q
D is the data input
Q is the flip-flop output
CLK is the clock pulse used to
load data into the flip-flop
CLA —
TEITE
The function of the device is ¢
to store a previous input until a new
clock pulse arrives. The stored data o o)

appears on the output, Q. When a new
clock pulse arrives the voltage on the
D input at that time will be stored
(entered) into the flip-flop to remain Py
until the next clock pulse arrives.
Furthermore the critical event during

@/

this edge is the activating event
which enters data into the flip-flop.
If the D input is H at that time the Q |
output, Q, will be H a few nanoseconds e
later. If the D input is L the output .
Q will also be L a short time later. o2 @3

02 @

The particular device we use for
register storage is the 74174 which
contains six identical D flip-flops ot Gy
per package with a common clock line.
Since our lab computer is a 12 bit
machine it will take two 74174's to ‘
hold one word of data. For efficient =
operation CPU's require several ¥
special dedicated words of data to be

ized data words are stored in flip-~flop !
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registers. A register is nothing more than a collection of flip-flops
dedicated to storing a particular piece of data. The accumulator is the
most familiar example, several others will be defined in the next chapter.
The length, or number of bits per register, is determined by the computer
architecture. Common sizes range from 8-60 bits.

Large computers will have several million bits of main storage. Even
minicomputers will have at least 5 x 10% bits. It is obviously impossible
to use devices like the 74174 which provide only six bits/package. For
the minicomputer example above, this would require 8000 IC's. Clearly
some more efficient way must be devised for storing large amounts of data.

There are many different technologies available which can be used for
this purpose. The prevalent ones are "core and "semiconductor" memory.
Since it is virtually certain that semiconductor memory will become dominant
we will discuss it only. :

Semiconductor memory is composed of D type flip-flops. What happens
as we put more of them into a single package, such as the 741747 For each
new D flip-flop two new pins (one D input, one Q output) must be put on the
package. Clearly a package with 100,000 pins would be a mess (the largest
common IC packages contain 40 pins).

What we need is some way to access several thousand flip-flops with a
small number of pins. This is done by using the concept of an address which
selects only one flip-flop from the multitude inside the package. Consider
a package with eight flip-flops. If we arranged it like the 74174 this would
require a minimum of 19 pins (2 power, 1 clock, 8 D, 8 Q). If we relax the
requirement of accessing all eight flip-flops simultaneously and are content
to access only one at a time the pin count would be § (2 power, 1 clock, 3
bits to select which flip-flop, 1D, 1Q). This could be implemented as shown
on figure 9.1 using a data distributor (demultiplexor) and a multiplexor.
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The beauty of this concept is that it is readily extendable. For
example a 16 bit memory could be constructed with only one more pin (4
address bits instead of 3). 1In fact this is exactly what is done with
semiconductor memories. )

The extended memory in your lab computer is very similar to figure
9.1 except that it contains 1024 bits (flip-flops) of storage. Another
difference is the timing pulses required-to write a-bit ‘of data into it.
The device is the 2102 RAM (Random Access Memory). 1Its symbol is shown
below: '

A2 Py

— A7 DIOT e

W% Cr
|7

10 AO - AS are the 10 address lines required to select a given flip—flop
(2+Y = 1024). '

CE (Chip Enable) is a line that acts like the enable
(strobe) line of the MUX's discussed in Chapter 6. When CE = H none of
the internal flip-flops are connected to DOUT, and the R/W line as well
as the DIN line 1is ignored. CE is very useful in large memories where
it is used to select a small subset of the complete memory. We wili
treat CE again when we discuss assembling large memories from 2102's.

R/W is a line used to set the read or write mode of the memory. In
your lab computer we always set R/W = H which sets the 2102 to the read
mode unless we wish to do a write operation. For a write, R/W = L, only for
the duration of the write cycle; at the end we always switch back to read.
Unfortunately when a new address is presented to A0 - A9 the ney flip-flop
output does not immediately appear on DOUT. The delay is called the access
time and is about 1 microsecond. We must have a way of
telling the computer that the memory 1is stable so it can trust the DOUT
line. When the CPU wants to read a new word of data it must load the new
address into a register which continuously presents this address to memory.
This register is the MA (Memory Address) register and is composed of two
74174 hex D flip-flop IC's. As soon as a load signal (clock) is issued to
the MA register, a 1 microsecond timer is started. The output of this
timer will be L for 1 microsecond after which it will go H. This timer
output is called RCC (Read Cycle Complete). This is shown on the timing
chart below:



“—— ) S

| |

DOUT \%X\\ v.\\\

invalid
new address valid data
to AO-A9 on DOUT

e

Write cycle timings are more complex. The data on the DIN line will
be entered into the flip-flop addressed by AO - A9 on the rising edge of
R/W. ‘

An analogous signal (WCC, Write Cycle Complete) exists for the dura-
tion of a write cycle. WCC does not necessarily equal RCC. These two
signals are combined to form CYCOMP (CYcle COMPlete).

RCC ——
wrmeme - CYCOMP

WCC K

which is then the memory busy signal.

Next we need to discuss how such chips are assembled into a complete
memory. Figure 9.1 would be defined as an 8 word by 1 bit memory. The
2102 is a 1024 word by 1 bit memory. To form a 1024 word by 12 bit memory
12 identical memory chips are wired "side by side" one chip per bit.
If all chips are - fed the same address,corresponding flip-flops in each
chip will be accessed at the same time.

DI o or,

27 4
— | o
A O > ‘_J — ﬁ — A [LQEE—N !/) -
5 ; .
] - -
>
/ //
A7 >0 o0, — £o, AG e ~ 20,
i hi T
R/ —

We can construct still larger memories in 1k increments (banks). To
do this we need some way to disable all banks except the one that contains
the address of interest. The bank enable must be derived from the addi-
tional address bitg beyond the 10 required by each memory IC. A 4k x 12
memory is shown in figure 9.2. Note that the R/W lines have not been shown
for drafting convenience. They are all daisy chained together so that all
chips are reading or writing at the same time.
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Fig. 9.2
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Let us return to a further discussion of flip-flops. We have already
introduced the type D flip-flop but have not talked about direct clear
(preclear) or direct set (preset). The complete symbol for a common D
flip-flop (% of a 7474) is shown below:

)

oS
—_— D & —
sl O J G l—
0cC
)

DS and DC are active independent of the clock. This is implied in the
terms direct set and direct clear. Asynchronous clear and set is another
way of saying the same thing. Whenever DS is L, Q will be H. Whenever
DC is L, Q will be H. The easy way to remember this is whenever DS is
active the output closest to it, Q, becomes active. Whenever DC:is active
the output closest to it (§) will become active. The definition of active
is shown on the logic diagram by the presence or absence of small circles
(DS, DC are active L; Q, Q are active H).

The ability to direct set or clear flip-flops is useful in initiali-
zing a machine. For example the CLR push-button is used to direct clear
critical flip-flops in your lab computer so the machine assumes a well
defined state which can later be left by the action of the CONTinue switch.
The use of asynchronous sets and clears should be limited to such initiali-
zing functions whenever possible since they are not synchronized to g system
clock. The importance of this is discussed at the end of the chapter.

We also need to discuss the a terminal. Because of the internal

construction of flip-flops the inverse of Q is always present and can be
connected to a pin "for free". We can look at this two ways:

a) G : G -
Q will be H only

[::>3* A Ien when Q = L

b) a ¢ ¢
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Here we have Q represented by both a high and a low polarity. Rather than

label the lower output Q (which is univergally done) we have labeled it Q
prime to emphasize thatvit is simply the other voltage representation of Q.

The most common way of looking at flip-flops is the first. 1In any
event the designer should be aware that either polarity is available which
can save an inverter.

The JK flip-flop

This flip-flop is more versatile than the type D; its only drawback is
it has two control terminals (J,K) as compared with one for the type D
whose only control is the D line itself. The symbol for the device is shown
below:

os ]

- CL i

The Q, a outputs are common to all flip-flops including the JK:
(Occasionally the Q will be eliminated if there is a shortage of pins on the
package, i.e., 74174).

The DS, DC lines have the same function as on the type D.

The flip-flop will make a decision every clock edge. What action is
taken depends on J, K at the clock tick. We define the state of the flip~
flop after n clock ticks to be Qn. Qp+7 is the state of the flip-flop
after one more clock tick. The truth table for the JK is given below:

J K Qn+1
0 0 ]q,
o 11]o0
1 o1
11 ]g,

Let us discuss this truth table a line at a time.

J =0, K=0: This is a very useful mode because it stores the previous
state of the flip-flop even though clock pulses are continuously presented
to it. This should be contrasted to the type D which will always load what
is on the D line at every clock tick.
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J =0, K=1: Clears the flip-flop at the clock tick. 1In other words

it is a synchronous clear.

J =1, K=0: Sets the flip-flop synchronously.

1]

J 1, K =1: Toggles the flip-flop at the clock tick.

This mode is very useful in designing counters. To demonstrate the
versatility of the JK we will show how it can be converted to a type D:

L T
.

"

if D=1 J=1,K=0 and Q 44 =1
ifD =20 J=0,K=1 and Qn+1 =0

In other words Q will always assume the value on the D line at the clock
tick.

There are other types of flip-flops but they are seldom used in actual
hardware design. Therefore, we will leave their treatment to the reference
texts.

There is one important parameter that affects a hardware design a great
deal and that is the type of clock that activates the flip-flop. By far the
nicest types to use are activated by a clock edge. An edge is simply the
voltage rise that occurs when a pulse goes from L to H. This voltage transi-
tion is often represented by an up arrow: ft. The fall of voltage at the
trailing edge of a pulse is represented by a down arrow: |. Flip-flops
activated by either rising or falling edges are called EDGE TRIGGERED. A
complete discussion of the advantages of edge triggering is given in your
text. Suffice it to say that it allows the maximum time for signals to
stabilize before they are used to make branch decisions.
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(10) PUTTING IT ALL TOGETHER

We have covered all of the components required in building a computer.
How do we put it all together and come up with one? This brings us to the
subject of computer architecture. Like any field of engineering design,
its essence is the compromise of cost, performance, and esthetics. We will
return to this subject at the end of the course when we have gained more
perspective. For now we will describe the design process for a simple
computer. The major steps of this process are outlined below:

1) Choose the command set.

This is the most important step of a new computer design. Unfortunately,
it traditionally has been the most neglected. If designed by programmers
the command set tends to be overcomplicated and difficult to implement in
hardware. When designed by pure engineers the command set tends to be easy
to implement but difficult to program with. Some of the most successful
commercial machines have abominable command sets. Some of the points

to consider are:

a) Does the command set FORCE good habits on the programmer? It
is becoming increasingly clear that the real cost of computing lies
in the construction of error free programs. The cost of computer
hardware is inconsequential. Anything that helps a programmer com-
prehend and simplify complex programs will lead to

overall lower costs.

'b) Is the command set simple? A surprisingly small set of well-

chosen commands will be adequate. Commercial machines range from

about 20 to 500 unique commands. 500 commands is far too many for
even competent programmers to keep at their fingertips.

c) Does the command set force the programmer to build clean sub-
routine linkages? Subroutines are the most powerful tool available
for understanding large complex programs. The programmer should
not have to go through an elaborate process to save registers,
acquire arguments, etc. upon.entering a subroutine. A counter exam-
ple is a large number of registers which can be used to hold argu-
ments upon entry to, and results upon exit from, a subroutine. The
seductive argument is made that this speeds up the machine. Thisg
is true but it immensely increases the chance for program bugs by
making it too easy for the programmer to leave critical items in
registers which can later be destroyed by subroutines. Some of
these bugs can be almost impossible to find. The programmer must
be saved from himself!

d) Does the command set provide for easy setup and control of
loops? TIf you ever design a machine from scratch you should read
and appreciate the concepts of structured programming.

e) Should the command set include facilities for stacks, indexes,
and indirection? These decisions can be made only in the context
of the machines intended use. Most machines contain facilities for
indirection and indexing. Only a few contain stacks even though
they make program compilation much easier.
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f) Does the command set provide fer easy input output?

In summary command sets should be chosen by people who are familiar
with modern programming and also computer architecture. A poor second is
the team approach where the team is composed of expert programmers and
computer architects.

2) A set of registers must be chosen that is sufficient to implement the
command set. Some of these registers are standard and exist in nearly
every design. The standard ones are discussed first.

a) The program counter, PC. Let us review how a computer executes
a program. Suppose we have the following simple program which adds
two numbers and ‘leaves the sum in the accumulator.

address c ommand operand address comment

START LDA A Content of a memory address
S T o containing A is loaded into
the accumulator.

ADD B Content of a memory address
containing B is added to the
accumulator; the sum remains
in the AC (accumulator).

HLT Stop the machine.

Memory contains two pieces of data A, B and in some other loca-
tion three commands, LDA, ADD, HLT, This program is written in
symbolic form which is done for the convenience of the programmer.
The machine understands only binary numbers, so the symbolic addres-
ses (START, A, B) must be converted into binary numbers. This is
done by a special program called an assembler.. Suppose we run
the above program through an assembler and it assigns the first
command to memory location 100. The next two commands will then
be stored in locations 101, 102. Suppose also the assembler
assigns memory location 163 to contain A and location 177 to
contain B.

The above program in absolute form would be:

command address command operand address
100 LDA 163
101 ADD 177
102 HLT

Actually the above program is not in pure absolute form since
the commands are still represented symbolically. Note the dif-
ference between A and the location that contains A. A is NOT
equal to 163. A is contained in location 163. The LDA command
will access memory address 163; take the contents of that
memory location and load the contents into the accumulator. A
is called the operand, 163 is the operand address.. The ADD




command also must access memory to get an operand. The HLT
command does not need an operand since its sole function is to
stop the machine. To execute this program the machine must
somehow be told where the commands are located. This is the
function of the PC. The PC will always point to (contain the
address of) the next command to be executed. Thus if we set
the PC = 100 and start the machine it will access memory loca-
tion 100 and execute that command, whatever it is (in this
case it is an LDA 163). Then PC will be automatically incre-
mented so PC = 10l. Location 10l is now accessed and that
command (ADD 177) is executed and PC is incremented. PC now
= 102 and that location is accessed. The resulting command
(HLT) is executed which stops the machine, the PC is auto-
matically incremented. Thus after the machine stops PC = 103
and the sum of A + B appears in the AC. In flow chart form:

100 =+ PC

i Note that the HLT command
command = MEM(PC) < stops the machine by means
independent of the PC. The
L PC always points to the next
command to be executed.

PC = PC +1

execute command

There is one type of command which will alter the PC and
that is a jump command. Consider the following two symbolic
commands s

ADD B
JMP X

There is a fundamental difference between them. The ADD
command requires an operand. The JMP command says jump to an
address; no memory access is required. All the JMP command
has to do is load the new address into the PC, In flow

chart form:

lst command address=PC

V.

command = MEM(PC)

PC +1 -+ PC

}

<i JMP command ALEN JMP address = PC —

Too

AY

execute command

68
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b) The instruction register, IR. When a command is retrieved
from memory it must be stored somewhere so it can control the
machine during the execution of the command. That somewhere is
called the IR, 1In the above flow chart we said:

command = MEM (PC) |
B |

What actually happens is:

| MEM (Pc) = IR |

How the IR actually controls the machine will become abundantly
clear as a result of your lab work.

c) Registers associated with memory, M, MB, MA, Let us review
memory. In all of our discussion we will assume semiconductor
static RAM's (Random Access Memory). At the "black box!" level
memory consists of many storage cells (D type flip flops)

which are selected by an address, and from which data can be
read or written into.

D — I,LBO
DATA i
IN ,
. MO,&Mw___n__m_
I MB_ ]
: : DATA
: ouUT
M ——ee
. MEMORY .
ADDRESS .
i,
READ /WRITE

The memory address is held in a register called the MA. The
width of this register is determined by the number of words in
the memory. A 10 bit register will address 210 = 1024 unique
memory locations. Some of the common sizes are shown below:
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number of bits in MA number of memory words
4 16
8 256
10 : 1024
12 4096
16 65536

The data to be written into the memory is held in the MB
(Memory Buffer) register. The number -of bits in this register
is equal to the number of bitsg per word in the memory. Common
word sizes are 12, 16, and 32 bits per word. Other sizes have
been used such as 24, 36, 48, and 60. The smaller sizes are
used for economy, the larger sizes yield arithmetic accuracy.

Strictly speaking M is not an external register although it
may be treated as such by the rest of the computer. The normal
state of memory is to be reading. As long as this is true new
data out will appear on the M lines a short time after a new
address is loaded into MA. Further, data out will remain
unchanged on the M lines as long as MA stays unchanged. Thus
the only precaution the machine designer must exercise is to
be sure that sufficient time has elapsed from a change in MA
until M is used.

d) Registers associated with the arithmetic unit.

1. AC -- the accumulator. This register is used to hold
one of the operands for the arithmetic unit and later to
store the results from the arithmetic unit. There is
always one of these registers; some machines have several.

your lab

2. MQ -- the multiplier quotient register.< not used in
} machine

3. Index registers.

3) A set of data paths sufficient to make all the necessary data transfers
must be chosen. Another name for a data path is a BUS. A bus is defined
as a separate wire for each bit of a word to be transferred. The trangfer
will ordinarily be between a source register and a destination register.

One extreme is a separate bus for every possible transfer path. The
rationale for this approach is to provide speed since in many instances
simultaneous data transfers can be made. Of course, this approach will
be more complex since each bus will require a separate set of control
gates.

The other extreme is to have only one bus in the machine and route all
transfers over it. Even though some advertising would lead one to believe
this is a new concept, it is actually very old. The virtue of this approach
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is simplicity and economy. Unfortunately, it will always be slower. We
will now go through this process for your laboratory computer:

1. Command Set:

Students are much more enthusiastic about a "real! computer than an
original machine designed strictly for teaching purposes in spite
of the fact that such a machine can illustrate all of the
principles of computer design at a considerable reduction in complexity.
Given this fact, the search for a suitable command set narrows to one of
simplicity and cost. A near optimum is the PDP 8-I. There are only eight
different commands although one of these eight has many variations, so the
effective number is about 20. This small set of commands reduces the com-
plexity of the control logic in the CPU. Most small computers have word
lengths of 16 bits. The PDP 8-T has a word length of 12 bits which reduces
the parts count. TFrom a teaching standpoint this reduces not only the
cost but also the number of wires the students must connect.

A very brief description of the command set is given below. A more
complete description will be found in the PDP-8 Reference Manual.

AND Forms the logical AND bit by bit between the AC and a word in
memory. The result is left in the AC.

TAD ‘Forms the arithmetic sum of the AC and a word in memory. The
result is left in the AC.

ISZ Increment and skip if zero--increments a word in memory. If the
result is 0, one command is skipped. If not 0, the next sequen-
tial command is executed. This command is used for loop control.

DCA Store and clear accumulator. Stores the AC in a memory location.
Clears the AC afterwards.

JMP Jump. Breaks the sequential flow of a program by setting the PC
to a new value. :

JMS Jump to a subroutine. Stores the return address in the first word
of the subroutine and jumps to the second word of the subroutine.

19 Executes an input/output operation.

Each of the above commands uses an address field in the instruction.
The next and last command is. fundamentally different. No memory access is
required so the bits of the address field can be used for other things.
Some of them are listed after the command.

NMR Non-memory reference. Bits of the address field can be used to:
Increment the AC
Complement the AC
Clear the AC
Clear the Link
Complement the Link
Shift right and left
Skip on various conditions such as AC=0, Link = 0, and minus AC.
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2. Choose registers.

This command set requires the minimum number of registers since only
one accumulator is required. The registers are:

AC, IR, PC, M, MA, MB.
3. Choose the data path structure.

We will choose the simplest possible -structure to implement the com-
puter, namely a single bus system. Our reasons are:

a. A single bus system is easy to understand. This makes it
better for a first introduction to computer architecture.

b. TFewer wires are required which makes it easier to build.
c. A smaller amount of control logic is required.

The schematic data path structure for one of the 12 bits is shown in
figure LDL.

The 8 input MUX serves to route any of the registers, including the
switch register, to the A input of the ALU. The ALU can perform any of
the 16 logic functions including F = A. Thus any register can be trans-
ferred to any other by a three step process:

a. Address the MUX for the desired source register.
b. Set up the ALU control so that F = A,

c. After F has stabilized, issue a load pulse to the destination
register. Note that a D type flip-flop will present the old data
on the Q output regardless of the data on the D input. This will
continue until a new clock pulse is applied to the CLK terminal
on the flip-flop. Thus a register can be both a source and a
destination without getting confused.

Also note that two registers can not be loaded directly from the F
bus. The switch rcgister is composed of 12 switches on the front panel
which can act as sources of data only. The only way to set them is
manually. The other register is the M register which is the output of
memory. The only way new information can be written into memory is by
first loading it into MB and then issuing a write command to memory.

We see that this very simple structure is sufficient to transfer data
from any source to any destination. A good portion of computer control
consists of doing nothing more. Command execution however, is more complex.
Suppose we wish to do an ADD instruction where we must do the following:

AC plus M - AC

Note that AC is always connected to the B input of the ALU. If the MUX
is addressed to M the contents of memory will be presented to the A
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input of the ALU. If we now set the control bits to make the ALU add A,
B the sum will appear on F where it can be loaded back into the AC after

it has stabilized.

The simple structure shown above is in fact adequate to implement
the entire computer. However, we have ignored how the computer will be
guided through its various steps. The control process can be broken down
into two major categories:

1) Fetching an instruction from memory and preparing it for
execution.
2) Executing it.

An example of an operation that must be done every time a command is
executed is PC(+)L - PC. This can easily be done with our proposed architec-
ture as follows:

a) Address the MUX to pass the PC (octal address = 0). A few nanoseconds
later the contents of the PC register will be stable on the output lines
of the MUX.

b) Command the ALU to add 1 to its A input. If you look in the defining
tables for the ALU.(74181) you will find that:

M=L S3=L S2=L Si=L S0=L CIN=L
will do the job.

c) A few nanoseconds after these control signals are applied to the ALU,
the output, PC(+)1 becomes stable and can be loaded back into the PC.
Since the PC is made from D type flip-flops, its output ( = PC ) will
ignore the input (PC(+)1l) until a clock pulse is issued to the flip-flop.

d) The idea is to generate the various control signals with gates, let
the signals settle down and load stable ALU output signals back into
a register.

e) YOU CAN CONTROL A COMPUTER WITH THESE REGISTER TRANSFERS.

A simple abbreviation for steps a-c is given below:
MUX=PC ALU=A(+)1 PC(load) or PC(L)

Another common operation is to move the PC to the MA to read the next
instruction from memory. Remember the PC points to the memory location
containing the next instruction to be executed and the MA is a special
register that tells memory where its next access should be. Every time we
load a new value into MA the contents of that memory location will be read
out a short time later (the normal state of memory is to be always reading
unless commanded to write). Now the PC must be passed through the ALU
unchanged so it can be loaded into the MA., TIf you look at the data book
for the ALU there is indeed such a command:

M=H S3=H S2=H S1=H S0=H CIN=X(H or L)
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In short:
MUX=PC ALU=A MA (L)

In our computer after we have read the next instruction from memory
we will want to load it into the Instruction Register (IR) so it can be
saved for the duration of that command. Control signals will be generated
from the (IR) to guide the CPU through to a successful completion of that
stored command. The IR can be loaded as follows:

MUX=M ALU=A IR (L)

Again let us emphasize that a computer is nothing but a set of regis-
ters which command sub-elements of the computer to do certain operations.

The MA tells memory where to read or write

The M gives the result of a memory read M=mem (MA )
The MB stores data to be written into memory mem (MA )=MB
The PC stores the location of the next instruction

The IR stores the current instruction during its execution
The AC is the accumulator

From the information stored in these registers we must generate control
signals to the MUX, ALU, Register Load Signals, etc. to make the computer
perform properly. By far the most important control signals are the ones
listed in the last sentence.

To get a solid foundation let us go through the first six ingtructions
in detail. We will assume that the fetch portion of the cycle has left the
effective address in the MA and the effective operand in the MB. This is
the entire purpose of the fetch cycle. The execute cycle can now be called
without regard for any of the complexity or past history of processing
during the fetch cycle. Not all computers treat the fetch cycle in such a
uniform fashion but it is a procedure that any experienced programmer would
consider very natural. All that we have done is split the execution of a
single instruction into two independent parts (co-routines), the fetch cycle
and the execute cycle. By making them independent we can tackle them
independently also. : ‘

1) AND X Remember that X is a memory address and the instruction
’ commands the computer to take the contents of that address
(the operand) and form the bit by bit AND with the AC.
The result is to be left in the AC. C ’

We make the standard assumption that the fetch cycle has
left the effective address in the MA and the effective
operand in the MB. Thus we form the bit by bit AND between
MB and AC and put the result in the AC.
The entire operation can be done in one clock cycle:
MUX=MB ALU=AND AcC (L)
2) TAD X The comments on 1) apply here also:

MUX=MB ALU=ADD AC(L)

2
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3) 1Sz X

CLKO)

CLK1)
CLK2)

4) DCA X

CLKO)

CLKL)

5) JMP X

CLKO)

6) JMS X

CLKO)
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This command does two things:

a) Unconditionally increments the contents of memory

location X.
mem(X) = mem(X) (+) 1

b) If the result in memory location X=0 then skip one
instruction; otherwise execute the next sequential instruction.

Note that this instruction must do a memory write since a new
value must be put back in memory. This will require the loading
of MB with the incremented value and the issuance of a write
command to memory.

After this is completed, we must test the result. If zero, the
next instruction must be skipped. This can be done very simply
by incrementing the PC in the ALU and loading the result back
into the PC if mem(X) = 0. If mem(X) # 0 do not load the new
address into the PC; by default the old value will be left in
the PC.

This instruction will take three clock cycles to complete.

MUX=MB  ALU=A (+) 1 MB(L) Get the old effective operand, incre-
ment it, store it in MB for memory
write.

Issue a write pulse to memory, wait until memory has completed the
operation.

MUX=PC  ALU=A (+) 1 Increment the PC
IF MB=0 load the ALU output into the PC.

This instruction stores the contents of the AC into memory location
X. Note that we need only the effective address for this command. We
do not care what was in mem(X) since the AC will overwrite it.

MUX=AC  ALU=A MB(L) Move the AC into MB in preparation
for writing.

Issue a write pulse, wait until done.

Jump to location X. This is probably the simplest command since
it only sets X into the PC.

MUX=WA  ATU=A PC(L)

This command is used to jump to a subroutine. The essence of a
subroutine is the ability to return to the next location after the
calling location. This return location is stored in location X.
A standard jump is then made to location X (+) 1.

MUX=PC  ALU=A  MB(L) Move the return address (PC) to the
MB so it can be written into the first word of the subroutine.
Remember that address is in MA from the fetch cycie.
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CLKl) TIssue a write pulse and wait for completion,

CLK2) MUX=MA ALU=A (+) 1 PC(L) Set up the jump to the
second word of the subroutine.

The next step is to derive the control signals and their timings that
will make the computer execute any one of these six commands. To do this
we organize this information into a table with clock times labeling the rows
and command types labeling the columns. The clock times will be abbreviated;
thus CP2 stands for Clock Pulse 2 (or equivalently clock time 2).

AND TAD Isz _ DCA JMP JMS
MUX=MB MUX=MB MUX=MB MUX=AC  MUX= MUX=PC
CPO | ALU=AND ALU=ADD ALU=A+1 ALU=A ALU=A ALU=A
AC (L) AC(L) MB (L) MB (L) PC(L) MB(L)
CPl Me@ory Meﬁory Memory
Write Write Write
CcP2 MUX=PC o MUX=MA
ALU=A+1 ALU=A+1
PC(L) if MB=0 PC (L)

The information in this table can now be converted to boolean equations.
Let us consider the MUX equations in detail:

MUX = MB during: CPO - (AND + TAD + ISZ)
MUX = AC during: GCPO « DCA

MUX = MA during: CPO . JMP + CP2 . JMS
MUX = PC during: CPO . JMS + CP2 . TSZ

Remember that the various MUX inputs are selected by a three bit code.
We will label this three bit code as B4 B2 Bl. The actual values for a given
code are shown on fig. LDl . We see that:

MUX = MB requires B4 B2 Bl = 001
MUX = AC requires B4 B2 Bl = 011
MUX = MA requires B4 B2 Bl = 010
MUX = PC requires B4 B2 Bl = 000

We can now derive boolean equations for each bit of the select code
as follows:

B4 = 0
B2 = AC + MA = CPO * (DCA + JMP) + CP2 . JMS
Bl = MB +AC = CPO - (AND + TAD + ISZ + DCA)

It is now a simple matter to build gate circuits that will generate
correct signals for B4, B2, Bl which in turn will properly control the MUX
fer the execution of the above commands. OF course, we will also need a
source for CPCO, 1, 2, but this is a simple problem which we will consider
later.



A similar analysis will give the ALU control signals as shown below:

ALU = AND during CPO - AND

ALU = ADD during CPO - TAD

ALU = A +1 during CPO - ISZ + CP2 - (Isz + JMs)
ALU = A during CPO « (DCA + JMP + JMS)

By reference to the data sheets for the ALU (74181) we find the following
control codes for the various operations:

M S3 S2 Si SO CIN
ALU = AND 1 1 0o 1 1 X
ALU = ADD 0 1 0 0 1 0
ALU = A + 1 0 o0 0 0 o0 1
ALU = A 1 1 1 1 1 X
The polarity conventions are:
M=11s H S3 .+ 80 =1 1is H CIN =1 is L

Boolean equations for the six ALU control signals can now be derived.

M= = CPO - (AND + DCA + JMP + JMS)
S3 = M + ADD = M + CPO + TAD

- 82 = = CPO - (DGA + JMP + JMS)

S1 = (AND + A) = M

SO = (AND +{ADJ+ A) = §3

CIN = 53 (Since we can assign X to be either 0 or 1)

Again we see that the resulting equations are very simple and that the
process of deriving them is also simple. All that is required is the com-
plete table of operations required at each clock pulse. This table is shown
in fig. LD2 and LD3. Note that six new operations are included in the blue-
print that do not correspond to the command set of the EDP 8-I. These are
the manual load commands which load the switch register into the corresponding
register. These are extra commands added for the convenience cf the program-
mer. They require so little additional hardware that they are well worth it.

The reader should go through this chart and derive the equations from it
to verify the logic equations for the MUX, ALU, and Load signals shown in
figure 1D6.

Let us return to the clock pulses. As you can see from the logic equa-
tions we must have a signal, for example CPLl, which is true only during time
slot 1. Similar signals must be available to tell you when you are in any
given time slot.

Such signals can be supplied by a decoder driven from a counter. The
particular counter that we use is the 74163; at this time you.should review
it in the TI manual. From the 'black box' standpoint it has four outputs
Qps Qc, Qp, Q4, and a clock input. Suppose the initial state of the outputs
are all L, i.e., (0000). The arrival of a clock edge (negative to positive
transition) will cause the device to COUNT or advance to the next state with
QA high and Qp - Qg low, i.e., 000l. The arrival of another clock pulse
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will advance the counter to state 2, i.e., 0010. Each new clock pulse will
move the counter into the next state. 1In each case there is a direct
correlation with the sequence of binary numbers from 0-15. The 16th clock
pulse will return the counter to 0000 where it is ready to start the
counting process again.

Now all we need is some device to tell us what state the counter is in.
That IC is of course a decoder. Remember a decoder accepts a binary number
and activates a unique terminal corresponding to that input.

Gp 0.0 0 Q 0._0_0
G, c s 2 3 H# 5 & 7
@z
{a

Thus if the counter is cleared, i.e., 0000, then only output O of the
decoder will be L. If the counter is in state 001l then only output 3 of
the decoder will be L. Since we need only eight different time slcts to i
control the execute cycle we use only the three low order bits of the counter “/
to drive: the decoder. The decoder actually used (7442) has 10 output
terminals (0-9) and will accept 4 bit binary inputs. 0000 through 1001
activate just one output terminal. Inputs 1010 through 1111 are illegal
inputs and turn off (inhibit) all outputs. Since we are interested in
decoding only eight states we may use the fourth input (D) as in inhibit.
If D = 0 we are considering inputs 0000 = 0Ll1l and everything behaves
normally. If D = 1 we are considering inputs 1000 = 1111. If we are using
only outputs 0 - 7 in our circuits they are switched off (H) whenever D = 1.
Thus D can be used as an inhibit signal for outputs 0-7. This is useful
since we want to feed signals CPO - CP7 to gates only during the execute
cycle. CPO - CP7 must be turned off during the fetch cycle to keep the
machine from getting confused.

Fig. LD9 shows the actual circuitry for generating CPO - CP7. Bl7 is
the decoder; note that inverters are used on the outputs so that CPO - CP7
are available in both high and low polarities. The enable line D, pin 12,
is driven from the EXEC flip-flop which turns on only during the execute
" cycle (EXEC is turned on when the FETCH cycle is -exited). Thus the decoder
is enabled during the execute cycle only.

B15 is the execute counter. Only the three low order bits of the
counter output (Qg, Qp, Qa) drive the decoder. When the EXEC flip-flop is
reset a solid clear is applied to B15 continuously holding it in the 0000
state (the Q output of EXEC is simultaneously disabling the decoder B17).
As the fetch cycle is exited the EXEC flip-flop becomes set (Q = H) which
then enables the counter Bl5 to count through the eight states of the execute
cycle and also enables the CPO - CP7 decoder so these signals become available
to the gates which are generating the MUX, ALU, and Load control signals.
At the end of CP7 the FETCH flip-flop is set (GTF, Go To Fetch, pin 13 of
B47) and the EXEC flip-flop simultaneously reset (pin 3, B46).
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Thus the execute cycle always starts at CPO and runs through CP7. This
is stupid since most instructions do not require all eight time

‘slots for their execution and the idle time is simply wasted. It is a small

exercise for the reader to generate a new GTF signal which will terminate
the execute cycle as soon as possible. The simple design was chosen to keep
the parts count to an absolute minimum.

At this point let us review what you should have learned from this
chapter:

1) Buss structure of the lab kit

2) How that structure can be used to move data within the machine;
3) How the machine can be controlled to accomplish the data movesg
of #2;

4) How boolean equations can be derived to accomplish the control
of #3;

5) An introduction to the concept of a time sequence of states used
to implement the boolean equations of #4. This topic is so impor-
tant that we will devote the next chapter to it.
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(11) HARDWARE FLOW CHARTS

The essence of digital design is the constructiocn of logic circuits
that will implement a flow chart- The reader is most likely familiar with
writing a program to implement a flow chart. It sometimes is foreign for
a person with such a background to think of hardware doing the same thing.
Both techniques should be in the tool kit of any computer architect since
each technique has unique advantages.

A) Hardware flow chart implementation.

1)

2)

Advantages

a) Speed -- properly designed hardware will always execute a
flow chart faster than a programmed computer.

b) Sometimes it is the only way a flow chart can be implemented.
For example, although a computer can be programmed to execute
the flow chart, how can the internal flow chart of the computer
itself be implemented? Clearly this must be donme with hardware.
c) Non-Volatility -- Since the hardware is made up of copper
wires, gates, etc., it does not disappear when the power is
turned off. As soon as power is reapplied the hardware is
ready to go. If the implementation is by means of a stored
program it is sometimes necessary to reload the program after

a power outage.

Disadvantages

a) Maintenance -- There are many more programmers in the world
than logic designers. If a bug develops it may be easier to
find and repair in software.

b) Inflexibility -- Hardware is difficult to change. It
usually means ripping out wires, changing gate types, etc.

A program change by contrast is quite easy.

B) Flowcharts implemented by programs (software)

Ly

2)

Advantages

a) Ease of implementation -- If the flowchart is at all complex,
and especially if it involves numerical computation, a software
implementation will usually be much cheaper.

b) Ease of change -- Often the flow chart one is implementing
will change during the course of a project, usually in an
unforeseen way. Such changes can be much more easily handled

in software. . e - ) R o .
c) Cost -- For one or two copies of a device it can be much
cheaper to buy a micro or minicomputer and program the solution.
A hardware solution does not pay off until many copies (often
hundreds) have to be produced.

Disadvantages

a) Interfacing -- We have been very glib when we talk about
implementing a flow chart in software since we are considering
problems where a physical device must be controlled. An example
would be a minicomputer which is controlling a telescope.

Somehow or other the telescope must be electrically connected
(interfaced) to the computer. This is always a hardware interface
which may be more or less difficult.
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b) Sometimes the flowchart you are trying to implement may
involve an algorithmic process that can be done by a program
but too slowly to meet external constraints. An example
might be conversion from polar to rectangular coordinates on
a rotating radar antenna. Depending on the speed of rotation
and conversion accuracy a computer program simply may not be
able to keep up. 1In such a case a hardware solution may be
unavoidable.

The point of the preceding discussion is that both methods are useful
for solving real problems. Any practicing engineer or computer scientist
must be open-minded enough to choose the optimum solution (which may be a
combination).

Naturally since we are building a computer we will restrict our dig-
cussion to hardware implementations of flowcharts. For obvious reasons we
are considering only the simplest systems, which happen to be synchronous
sequencers. Synchronous means that the transition from one point to
another on the flow chart happens only on the tick of a system wide clock,
The basic reason for this simplicity is that every decision can be made

~at a predictable time. Further, these times can be chosen so all transient

behavior in the system has died down and decisions are based on stable
signals. The resulting advantages are so strong that the vast majority of
digital systems designed are synchronous. Nonetheless, asynchronous
systems are important for the professional designer and should be studied
in some of the reference texts for those wishing to go deeper into the
subject.

The symbols we use to construct a flow chart are shown below:

STATE

This symbol represents a unit of time. Time can be visualized as
starting at the top of the rectangle, progressing for one clock cycle to
the bottom of the rectangle which coincides with a clock tick. At that
time a jump to the top of a new box is made. Such a box is called a STATE.

Each box on a flow chart is unique by virtue of its position and must

- therefore have a-unique identifier. This identifier is made up of boolean

variables, usually outputs of flip-flops. Thus a state can be identified
either by the flip-flop outputs or symbolically. By convention we write
a symbolic name for a state to the left of the box, the boolean variables
on the upper right.

We ‘have already discussed the flow chart for the execute cycle. ILet
us show it graphically:
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The above flowchart is useful but limited since it has no provisions for
a conditional branch. The symbol for a test is shown below:

I

ST G

The quantity to be tested is written inside the box and is a voltage.
Examples are:

</////L\\\\\ .f“_a___i;_m"___m~\
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Since the quantity to be tested is a voltage which can assume only two
values (H or L) the ordinary conditional branch leads to only two other
states.

The actual flow chart for the execute cycle in fact has a conditional
branch condition built in to handle the case of a memory write cycle.
Memory timings are independent of the main system clock; therefore the
memory must have a way of telling the computer that it has finished a
write cycle and the computer must have a way to wait until it gets this
signal from memory. If you examine the execute table you will see that
ISz, DCA, JMS, LDM, and DEP initiate a write cycle on CPL, After the
write cycle is initiated, memory will independently take care of its own
operation. During this time we are free to do other CPU operations
provided we don't disturb MA or MB. The execute table discloses that MA
and MB are not loaded by any command during CPl, CP2, or CP3. We can
therefore do these CPU operations in parallel with memory operations and
save time. Therefore, we do not test CYCOMP until CP3.

CYCOMP is the signal that memory
returns to the computer

when: CYCOMP = 0O; the memory is still busy

when: ~ CYCOMP = 1; the memory has completed
its previous operation.

The branch test is not made until the clock ticks. The designer must make
sure that CYCOMP is stable at the clock tick time or it is possible to
confuse the branch test. The test for CYCOMP is handled in a very clever
way by a special property of the 74163.

It is now time to consider the 163 in full detail. The student is
urged to examine a manufacturers data book in addition to this description:

_ g
——— C (O I F—
(R - [OF - S
—] A (o)) S—
0 LOAD

——— LK

e CLEAR

L A ELE
/’) 7._
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There are many nice properties of this IC; one of them is controlled
by the LOAD terminal. If LOAD = L the IC is disabled as a counter and
reconfigured as four ordinary D flip flops whose inputs are A - D and
outputs are QA - Qp. If LOAD = H and CLEAR = H the IC functions as a &
bit binary counter provided both ENABLE P and ENABLE T are H. If either
goes L the counter will ignore CLK pulses and stay in its present state.
This is used to implement the CYCOMP test during execute, CP3. k #
o
? T

5 e ; f B N LN =
e o it =0T
[ CXCorF” - ©oNey
// 3<:j H 7/ \\:}) ~1“_~74;;ip/¢/¢
. > R S—— crIh
[
|
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It is possible to enter execute with a CYCOMP still pending (CYCOMP=0) .
The purpose of the WIC - CP3h gate is to disable the CYCOMP condi-
tional branch test during the execution of a microinstruction. The reason
for this is subtle. If the system clock is much faster then CYCOMP many
branches back to state 3 will take place before CYCOMP = 1. If you look
at OPGl during CP3 you see that AC will be incremented at the beginning
of CP3 and the new result loaded back into the AC at the end of CP3. Thus
it is possible to increment AC many times while waiting for CYCOMP. This
is prevented by gate A7 (pin 10, fig, iD9). All other commands will have
a conditicnal branch on CYCOMP at the end of CP3. CYCOMP will normally
be 1 unless the memory has been issued a write pulse so those instructions
that do not issue a write during CPl will always take the branch to CP..
Those that do issue a write will branch back to the CP3 state until CYCOMP
= 1 and then go to stdte CP4.

The previous technique will always loop back to the parent state on
the failure of the conditional branch test since the counter will be held
in its old state. A slightly more complex flow chart will be required to
describe the fetch sequence since we will need to branch to any state on
the O branch of the conditional test.

To describe this flow chart we need to introduce the concept of a
conditional output. Its symbol is:

C )

If a state is to output a value regardless of any test conditions that
value should be written inside the state box:

PDQ X indicates X will = 1 during state PDQ
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Sometimes however, we will want signals to be true only during a given
state AND a given test variable equal 1 (or 0). We show that in the
following fashion:

Fo&X X !

T

<< y>‘e‘>/\ A )"’

X will be true for one clock time during state PDQ

A will be true for one clock time during state PDQ
only if Y =0

Z will be true for one clock time during state PDQ
only if Y =1

The circuit we shall describe has the following basic structure
for each state:

I/

. Al ) -
STATE ¢ <ij;£§777) fi~e{ , M/}-——9 STATE [
v
F{( \
./
s
STA7E Lty
v

Here we have labeled the conditional ocutputs as Fi (Fetch i) and Ai
(Alternate i). There is nothing sacred about these names and any name
that has meaning with respect to the flow chart being implemented may be
used by the designer. Note that Fi and Ai are not states; they are condi-
tional outputs associated with state i.

We will now discuss the fetch flow chart state by state:

(olgyel
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Ty

AO: is the external interrupt sent to the CPU by peripheral
devices. The CPU has an internal flip flop that can be set by a special
~ command , ION; or reset by another special command, IOF. The CPU will
ignore external interrupts when IE = 0 and respond when IE is 1. Response
to an interrupt is the execution of a JMS to location 0. At this point
reread the description of the JMS command. The net effect will be to
store the updated PC in location 0 followed by a JMP to location 1. The
execute cycle expects to find the effective address (0) in the MA., A
JMS (octal 4) must replace the old Opcode. This is done by the triple
two input multiplexors (B13) shown on figure LD10. Condiftional output AO
resets the JK flip flop B47, the Q output goes L which is the proper
polarity to switch the MUX inputs to (Vee, gnd, gnd) = (100) = octal 4 to !
the instruction decoder Bl4. CP7h sets the flip flop at the end of the
execute cycle so that the MUX will pass the opcode (IRO, IR1, IR2)
normally for following instructions. Another function of A0 is to turn
off the interrupt system by resetting the interrupt enable flip flop.
The reason for this is the interrupt subroutine must be free to process
the interrupt without being subject to interrupt.

FO: The absence of an interrupt is by far the most common exit taken
from state 0. The next instruction to be executed must -be-read from
memory; the PC points to that memory location. Therefore, the MA is
loaded from the PC and memory read cycle is started by issuing a read (R)
pulse.

STATE 1

ooz /

=]

~ CXeory 2 2
//)l
el

/

T T N T T
<i‘ ALy = A “Qi>
. e (¢ )

Al: Our standard hardware actually provides an Al output; but since
it is not needed the pin on the generating decoder remains unconnected
and the Al conditional output is not shown on the flow chart.

Fl: After CYCOMP = 1 all of the signals shown in conditional output
F1 will beccme active. These signals route the new instruction just read
from memory to the instruction register.
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STATE 2 el

A2: 1Ignored.

F2: We wish to always increment the PC so we do a conditional
branch on an always true variable to in effect generate an unconditional
branch. The PC now points to the next instruction so the next time we
reach FO, PC will point to the proper instruction.

STATE 3
oo //
]
1 5
| S——— — /ﬁ\;
~ ~~ T ruX= ,PC >
P ~. Vi AV
L Lo > >/’ ALy = A B — STATE
“n £
™~ / \/7""(4) /?C/!J/
~3 SrTUX = EA
ALU s A
rA (L)
2‘(,
STATE i

STATE 3 is used for processing the special instruction ION. This
special command is used to turn the interrupt system (IE flip flop) on. I
In addition it is set up so the next instruction will always be executed
even if an interrupt is pending. The reason for this is the interrupt
subroutine must disarm the interrupt system so it can process an interrupt
without itself responding to following interrupts. The next to last
instruction of the interrupt subroutine must be an ION to rearm the
interrupt system. The last instruction of the interrupt routine must be
a return JMP to the main program. This return jump, must always be
executed even if a new interrupt is pending. ..~ - . @5* L_(#(aV% PR |

A3: Must rearm the interrupt system so it sets 1 = IE (A95 fig. LD21).
There are many different kinds of flip-flops that could be used for IE.

We have chosen one of the more complex kinds, a gated D flip flop. This
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special type has so many nice properties that it is becoming available

as an IC. 1In view of this we felt it was worthwhile for the student to
construct one from individual components (A97, A%5). As long as the

INTLD signal is false, data from the flip-flop will be reloaded on the

next clock. If INTLD goes true the old flip-flop output is blocked from
the D input and a new signal A3 is loaded into IE. The beautiful thing
about this circuit is that the clock can be fed to the D flip~flop always
without destroying the old contents of the FF. Only when the load signal
is applied does the FF accept a new value. The conditions for loading are:

INTLD = AO + A3 + CPO - IOF

Remember that state AO must turn off the IE FF. During AO, A3 will
be H which will apply an L to D (A95, pin 12). Thus AO will set 0 - IE.
The same is true for the special command IOF which disarms the interrupt
system during CPO. During A3 the input to pin 5, A97 will be L, input to
D (A95, pin 12) will be H. Thus A3 will set 1 - IE.

Note from the gates at the top of figure 15 that instructions 6001,
6003, 6005, 6007 (octal) will all be decoded as an ION instruction.

A3: As shown above 1 = IE. Also since the next instruction must
always be executed independent of a pending interrupt we must branch to
state 1 thereby ignoring state 0 (which tests interrupt). However, we
must duplicate the work accomplished in FO.

F3: Assume we have some instruction that requires an operand such
as TAD X. We must make a memory reference to get the contents of location
X. The PDP 8 can address memory only within PAGES, of 128 locations. The
reason for this is that only 7 bits of the command.( 3% IR11) are inter~jj?g s

preted as a memory address. Another bié| lis used to select one of
two pages for the memory access. If IR5 =0
as a reference to page 0. If IR5 = 1 the reference is to the page that .
contains the instruction being executed. Since memory has 4096 (212) words i
we must generate a 12 bit memory address which requires that we concatenate ﬁ%g
an additional 5 bits to the 7 from the instruction. To access the current /
‘page these 5 bits must be the 5 most significant bits of the PC. We do

this by ANDing IR5 with PCO-4.

IR5 - PCO =0 if IR5 = 0 = PCO if IR5 = 1
IR5 « PCl
IRS - PC4 = 0 if IR5 = 0 = PC4 if IR5 = 1

We call this composite address the effective address EA.

EA (0-4) = IR5 * (PCO-4)
EA (5-11) = IR(5-11)

These gates are shown on fig. 1D18, A48, 49, 50. The total effect of F3
is to load MA with the EA in preparation for a memory read to retrieve the
effective operand.

bits IRS - 11 are interpreted o L
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STATE 4 ' Glo0
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STATE S

There is a fundamental difference between an instruction like JMP X and
TAD X:

JMP X says jump to location X we do not need an effective
operand, the effective address is sufficient and
since this was loaded into MA in F3 we can exit
directly to the execute cycle.

TAD X however, requires the contents of X so we must do
an additional memory read to get the effective
operand which must then be stored in MB before the
execute cycle is entered.

State 4 is the place where we make the decision that an effective operand
is not needed and therefore an immediate exit to the execute cycle can

be made. There are two instructions that can be immediately decoded in
this class:

IOT X 1Initiate an input, output operation to peripheral
(opcode=6) device X. In the IOT instruction X address
a device not memory.

MIC X MIC is a special class of instructions called the
microcoded instructions. In this case X does not
refer to memory but instead tells what kind of
microcoded operation to carry out. An example would
be TAC (Increment ACcumulator). None of the MIC
operations require a memory reference. Note that
CYCOMP = 0 because of MA(L) in F3.

The DCA, JMP, and JMS instructions are slightly more complicated than
shown above and require a discussion of INDIRECTION. In an instruction
like JMP X, X will be the jump address if IR3 = O. However, if IR3 = 1
then X is tHe address of the jump address. Such instructions are called
indirect,

Thus if:

IR3 =
IR3

X is a direct address,
X is an indirect address.

O



Indirect addresses require one more read cycle to get the address which
can then be treated in the normal fashion. Thus we can call the execute
cycle only if the jumps are direct jumps. The direct DCA instruction is
in the same category. Thus the -ondition for an early exit to the execute
cycle is IOT + MIC + (JMS + JMP + DCA) - IR3 = 1.

STATE 5 o/o/

\\cycame/,’ —

rOY = 17
ALy= A
28(0)

S7ATE

State 5 will be entered only for commands that require an effective operand
(such as TAD X) or indirect jumps or DCA. In an indirect JMP *X (indicated
by the * before the X) we calculated the address in step F3 but this is
only the address of the address so we must read memory again to get the
final address which we now call the effective address.

i.e., JMP X jump to loc [X]
JMP * jump to loc [mem(X))
TAD X operand = contents of [mem(X)]

Since a memory access will be required in any case, a read pulse is issued
and a test on CYCOMP is made. After the memory is stable the result is
transferred to MB on the assumption that it may be the effective operand
of an instruction like TAD X.

STATE 6 , os/0

The function of state 6 is to test for the presence of a direct instruction
like ADP X. 1If the instruction is of that type the execute cycle can be
entered. If it is an indirect instruction further processing is required.

¥
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STATE 7 o ] '

X = 17 E
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If we get to state 7 we know that we have an indirect instruction. These
instructions may use the auto index registers. They are eight words of
memory, address 00LO = 0017 (octal). If one of these locations is accessed
by an indirect instruction its contents are incremented before it is used
as an address. This is a very convenient way for instructions to auto-
matically index through memory. For example suppose we wish to clear a
table 1535 words long whose starting location is 321g.

octal octal symbolic operand
location code inst address comments
110 7200 CLA -—-- move the starting address - 1 (320)
to auto index register 12
111 1130 TAD 120 mem (130) = 320
112 3012 DCA 12 mem (12) = 320
113 1131 TAD 131 mem (131) = - 153
114 3132 DCA 132 mem (132) = - 153
115 3412 DCA *12 clear table
116 2132 - 18z 132
117 5115 JMP 115 repeat if less than 153 locations
cleared
118 HLT 153 locs cleared
130 320 data location must contain (st adr-1) = 320
131 7625 data location must contain ~ 153

The first three instructions 110 - 112 set up the table starting
address in auto index register 12.

_ Instructions 113 - 114 set up the loop count (table length) in
location 132 for later use by the ISZ instruction. The general rule for
a loop that repeats N times is to store the 2' 5 complement of N in a
memory location later used with ISZ instruction.l

The actual loop is in locations 115 - 117. We will discuss the DCA *12
instruction in detail. DCA does not clear memory location 12. Since it
is an indirect instruction location 12 contains the address of the final
location to be accessed by the instruction. In addition since it is an
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auto index location (0010 - 0017) that is referenced indirectly it is
incremented before it is used. To start with it contains 320. The first
time DCA *12 is executed the contents of memory lccation 12 is incremented
to 321 and the 321 is used as the effective address. Therefore, location
321 is cleared. The next time a DCA *12 is executed the 321 will be
incremented and then used as an address; thus location 322 will be cleared.
The nice thing about this technique is the incrementation takes place
automatical ly since the following two conditions were met:

1) The memory reference was indirect,
2) The memory reference was to an auto index register (0010 = 0017)

F7: Increments this address and puts the new value into the MB in
preparation for writing it back into memory. A memory write pulse is

issued. Sl e

J,\/'"'/?,"{t't?‘ﬂ e IR .
A7: 1Is the step taken if the indirect memory reference is to any A Gy
memory location other than an auto index register.
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The function of state 8 is to wait until memory is stable at which
time the auto index register will have the incremented address written
back into it. The incremented address (the effective address) will still
reside in MB so it can be transferred to MA as required by the execute
cycle. ' '

STATE 9 oo s
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Again we have to recognize the fundamental difference between JMP *
instruction and a memory reference instruction 1ike AND *X. 1In state 9
we have the effective address which is all we need to execute a jump
instruction which we can do in A9. If it is a memory reference instruc-
tion we must do one final read to get the effective operand. This is
done in F9.

STATE 10

F10: The sole function of this state is to load the effective
operand into the MB and call the execute cycle.

Since the concepts of effective address and effective operand are
s0 important,we will review them again.

EFFECTIVE ADDRESS:

The final address presented to the execute cycle after all indirec~-
tion and indexing have been performed.

EFFECTIVE OPERAND:

The contents of the memory location pointed to by the effective
address.

The fetch sequencer is shown on fig. LD1l. The state flip-flops are
the Qp - Q) outputs of the 74163 counter, Bl2. The counter is held to
0 by the fetch flip-flop, B47, except when this flip-flop is set (i.e.,
during FETCH cycle). The setting of B47 removes the clear and also enables
the ET input of the counter. B47 also appears on figure 3 for clarity.

The 16 wide MUX (C3) senses the present state of counter and selects
a test condition for each state. If the test voltage is H the correspon-
ding Fi output on decoder (Cl) becomes active. This also enables the EP
input to the counter so it can increment to state i + 1 on the next clock
tick. 1If test voltage (i) is L, output Ai (C2) becomes active and at the
same time the count mode is inhibited holding the counter in its present .
state. A3 and A7 involve jumps to new address; therefore we must calculate}
the jump address and present it to the D inputs of the 74163. A load 4

sigral is simultaneously generated by the OR gate (A93). /fﬁ%ﬁihﬂaﬁé

4
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Both the execute and fetch sequencers use a binary coding to represent

states. Another scheme that is often used is to dedicate one flip-flop:to
each state. Such a design is called a ONE HOT coding since only one flip-
flop should be set at any time. Such systems are very easy to design but
will require more hardware for a machine with many states. We have two
examples in the lab computer. :

19

2)

RUN state: The run/halt state may be represented by a single flip-
flop. Run corresponds to the RUN FF set and halt to RUN FF reset.
This flip-flop is shown on fig. LD9, B46, pin 9. The RUN FF must be
set to permit the completion of execution (CP7) to call the fetch
cycle. '

GTF = RUN - CP7

Go To Fetch = RUN + (end of ex cycle)

Thus the RUN FF can be reset any time during the exzecute cycle and
that cycle will finish but the next fetch cycle will not start. The
conditions for stopping the computer after the current instruction:
are:

STOP switch is manually depressed.

SING INST switch is activated.

HALT command (7402) is executed.

The condition for setting RUN is a signal derived from the CONTinue
switch on the control panel. CONT Pulse will be true for only one
clock cycle when the continue switch is depressed. At the same
time it is necessary to set the FETCH FF to start executing the
first instruction.

FETCH and EXECUTE flip flops. This is another example of a ONE HOT
coding since the machine can be in fetch or execute but not both.
If you look at the fetch flow chart the conditions for starting an
execute cycle are:

GTE (Go To Execute) = AO + A4 + A6 + A9 + F10

This is shown in fig. LD9, ALCQ, pin 8. GTIE simultaneously sets the
EXEC FF (B46, pin 2) and resets the FETCH FF (B47, pin 14). Setting
EXEC enables both the EXEC counter (BL5, pin 1) and the CP decoder

(B17, pin 12). Signals CPO - CP7 are now generated in sequence to
carry the machine through the execute cycle. CP7 will reset the

EXEC FF (B46, pin 3) and set the FETCH FF if RUN = 1; GTF (A54, pin 11).



(12) DERIVATICN OF FINAL LOGIC EQUATIONS

MUX EQUATIONS

Now that the complete flow charts for both fetch and execute have
been explained we can derive the equations for control signals in final
form. We do this by locating all occurrences of a given signal on both

T & example MUX = PC occurs in the following places:
\.'/le {"ffm!n I

g

A0) FO, F2, A3, JMS-CPO, OPG2-CPO, ISZ-CP2
Therefore, the final equation for MUX = PC is:
MUXPC = AO + FO + F2 + A3 + (JMS + OPG2)-CPO + ISZ-CP2
Verify each of the following equations:

MUXM = FL + F5 + F10

MUXEA = F3

MUXMB = F7 -+ F8 -+ (AND + TAD + ISZ) . CcPO
MUXMA = JMPCPO + JMS-CP2 + (DEP + EX) . CP6
MUXAC = DCA<CPO -+ OPGL-(CP2 + CP3)

MUXSR =

(LDMA + LDM + LDMB + LDPC + LDIR + LDAGC + DEP) + CPO + OPG2 - CP2
. —

N e e oo

~— e

= MANSW - EX + CPO + OPG2 - CP2

The MUX must in turn be selected by sending it the proper 3 bit code
B4, B2, BL. By referring to fig. LDl the MUX assignments are:

=
N
=

input selected
AC
MA
M
MB
PC
SR
EA

OO R

HFHHEOOMOOW
HOQCOMM=om

The equations for B4, B2, Bl can now be written by inspection.

B4 = MUXM -+ MUXSR + MUXEA
B2 = MUXAC + MUXMA + MUXM -+ MUXEA
Bl = MUXAC + MUXMB + MUXSR + MUXEA

. The logic diagram for these equations is shown in fig. LD12. You may
wonder why B4 is driven by two identical gates. The reason for this is
that one gate output can only drive 10 gate inputs. But there are 12 MUX's
that must be identically selected. By paralleling two gates we can drive
20 inputs. We could have generated the signal with one gate and then
amplified it with a non-inverting buffer to get the additional power to
drive 12 inputs. However, this would have added one more stage of delay
and the chain is already long (5 levels).
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ALU EQUATIONS

These equations are derived in a similar fashion to the MUX equations.
Every occurrence of a given condition is collected together:

ALUA = FO + FL + A3 + F3 + F5 + F8 + F10 + (DCA + JMS + JMP + MANSW - EX)

ALUA + 1 = A0 + F2 + F7 + (0PG2 + I8Z) - CPO + (ISZ + JMS) - CP2 + OPGl
*CP3 + (DEP + EX) - CP6

ALUAND = AND * CPO
ALUADD = TAD - CPO
ALUNA = OPGl - CP2
ALUOR = OPG2 - CP2

il

The control bits to achieve these functions are listed below; the con-
ventions are:

M=1,H S3 «« S0 = 1,H CIN = 1,L
M S3 S2 S1 SO0 CIN
ALUA 0 0 0 0 0 0
ALUA + 1 0 0 0 0 0 1
ALUAND 1 1 0 1 1 X X can be either
ALUADD 0 1 0 0 1 0 alorao
ALUNA 1 0 0 0 0 X
ALUOR 1 1 1 1 0 X
SO = ALUAND -+ ALUADD = (AND + TAD) * CPO
Sl = 82 + ALUAND = S82 +AND * CcPO
S2 = ALUOR = 0PG2 -+ CcP2
$3 = S0 + S1 ‘ = S0 + S1
M = S1 + ALUNA = S1 -+ OPGl - CFP2
CIN = ALUA + 1 = ALUA + 1

These equations are implemented in fig. LD13.
LOAD EQUATIONS
A summary of machine action is:

1) MUX selects a source register,
2) ALU operates on the output of the MUX,
3) A destination register must be loaded with the output of the ALU.

The registers are made from 74174 IC's which are hex D flip~flops
with a common clock line. Whenever the clock line sees a positive going
edge it loads the D inputs into the flip flops and stores the result until
the next clock. Since these registers must hold data over many machine
cycles we cannot feed the system clock to the register clock line. Instead
we must feed a clock to a register only when we want to load it with the
output of the ALU. (Remember that the ALU output is bussed to all register
inputs). These special register clock signals are called register LOAD

signals. - : S

- CR
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The design procedure for the load signals is a simple listing of the
states and conditions that cause a register to be loaded:

MA(L) = FO + A3 + F3 + F8 + LDMA'CPO + (DEP + EX) * CP6

MB(L) = F5 + F7 + F10 + (ISZ + DCA + JMS + LDM + LDMB + DEP) *CPO
IR(L) = F1 + LDIR:CPO
AC(L) = (AND + TAD + LDAC)-'CPO + OPGL°*CP2-IR6 + OPG2-CP2-IR9 + OPG1-CP2-IR11

PC(L) = AO + F2 + (JMP + OPG2.T + LDPC) «CPO + (ISz-MB = 0 + JMS) - CP2

L= IR8® (IR5°AC - + IR6°AC = 0 + IR7°L = 1) . - -
ot £ : L3

i
i

Yo B

These equations are shown on fig. LDI4 and 1D15. You willénotice that a
flip-flop is interposed between the gate that generates the load and its
final destination at the corresponding register clock.

This special circuit is worth discussing in more detail. We need to
present a single positive going edge to the clock input of a register to
load it. The immediate thought is simply gate the clock to the register.
GATING THE SYSTEM CLOCK IS NOT GOOD PRACTICE! To see this consider the
timing diagrams:

____________ S
| } GATE

| L e

[i RUNT H} G°CLK

You can see that the first pulse is not the rising edge of the clock but is
the rising edge of G. 1In general this is bad, since now the timing is no
longer synchronized with the system clock. Another problem is the possible
generation of a "RUNT" pulse if the gate and clock overlap only a small
amount. Such a pulse may or may not trigger a flip-flop clock. This can
cause the system to be "almost reliable’ which is an impossible situation
to trouble shoot. There is still a third problem with the gated clock.
Real signals are never nice square waves as shown above. Suppose the CLK
is clean but G contains a noise spike when both G and CLK are supposed to
be true. You will get an extra clock edge on G . CLK! Extra clocks are
seldom beneficial. '

What we need is a device called an enabled clock passer. At the black
box level it has the following properties:

1) The system clock can be continuously presented to the ECP,

2) A separate enable line will be tested by the ECP just before the system
clock positive edge.
a) If enable = H, exactly one clock cycle will appear at the output,
b) If enable = L, the output will remain low.
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3) The above must be accomplished without gating the system clock.

A circuit to accomplish this is shown below:

£ v & &

l
LD&—;/M N |
I

If EN is present at the clock edge the FF will set making Q = 1. It will
remain there for % clock cycle at which time TLK and Q are both true so the
output of the AND gate is L which will reset the flip flop. Thus the FF
reproduces the positive half of the clock cycle. Even so the above circuit
can be subject to failure if the propagation delay of the inverter is
longer than the delay of the flip~-flop. This should be demonstrated by
drawing a timing diagram. In the lab kit this problem is solved by using

a very high speed inverter to produce TLR. The skew between CLK and TIX

is 6 ns. The propagation delay of the 74174 is typically 20 ns. To further
reduce the sensitivity to the critical timing between CIK and Q a low power
AND gate (74L00) is used. liese gates have propagation delays of 35 ns and
are quite insensitive to runt pulses.

The feeling you should get from the above discussion is that gating
the system clock is dangerous; that the ECP is a better solution, the ECP
is still not the ideal solution.

The ideal solution is to use the gated D flip~flop used in the interrupt

system (IE). If these flip-flops were used for registers the system clock
could be hooked to the gated D clock line continuously without any gating
on that line. The G line involves gating but now it is in the data path.
The only requirement is that G be stable at the clock tick. Unfortunately,
these IC's are just now becoming commercially available so we are forced to
use a less than ideal solution. Future designs should always use the gated
D for registers.

ACCUMULATOR EQUATTIONS
The accumulator is shown in fig. LD19 and is made from three universal

shift registers (74194). These registers are controlled by two bits, ACSO
and ACSL as shown in the following tables:

S1
H

0 |

N .
=i ¢

S

H load new data Ry
L shift left

H shift right

L

H
L
L retain old data
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The primary signals for AC control are:

AC(L) load ALU output into AC

PAR shift AC right (circular shift with LINK)
RAL ' shift AC left (circular shift with LINK)
CLA clear (asynchronous)

The encodings for ACSO0, ACS1 are:

S1 = AC(L) + RAL gate A92, pin 8
SO0 = AC(L) + RAR gate A92, pin 6

Note that since the clear is asynchronous there must be no noise on that
line. The equations for RAR, RAL, and CLA can be derived from the execute
flow chart:

RAR = OPG1-IR8 (CP4 + IRLO * CP5)
RAL = OPGl-IR9 (CP6 + IRLO + CP7) .
CLA = OPGL-IR4-CPO + (OPG2+IR4 + DCA)-CPL + CLRP

s (CLRP is derived from the control panel clear button)
e / £
. o v PR

LINK EQUATIONS

The link is a single FF (B8, fig. LD19) used to store the carry out
of the accumulator. Each carry generated by an arithmetic operation
(TAD + IAC) must complement the link. The link can also be complemented
by a microcoded instruction, CML (7020). There is one other microinstruc-
tion which can affect the link, CLL (7100) which clears it.

By reference to the execute flow chart we can derive the link control
equations (figure 10)

CLL = OPGL°*CPO*IR5 + CLRP
. CML' = OPGL+CP2-IR7 + (TAD + OPGL+CP3:IR11)-COUT
S wl Ema gl K B

Since we afé‘nearly finished with our discussion of the design we will
implement the link in a sophisticated manner. We will lead up to this by
eéasy stages. The result is shown in LD23.

1) A way to look at a JK flip-flop is that the output opposite the input
will be the one responding to the input.

if J =1, Q will be set if K = 0
if K=1, Q will be set if J = 0
3y Gz 2, 3, 6, 7 are pin numbers

2) This allows us to turn the flip-flop "over" and relabel J, K, Q, Q. 1It
is still true that:

| if J =1, Q will be set if K = 0
| if K = 1, § will be set if J =

I
(]
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3) A D FF can be made from a JK FF by making K = 7,
ﬂ “—““"—9”‘**“"”"—'[ J qj . )
N ifD=1,J3=1,K=0 and Q will set (=1)
\ / I ifD=0,J=0,K=1 and Q will reset (=0)
i
f~_7é__,n' 3 i.e., Q =D after a clock

4) A very nice version of a JK would have the K low active and the J high
active since this device could be converted into a D simply by connecting
J directly to K.

is a D since K = J,

l -

bt dr g

One manufacturer has recognized this and produces such an FF (Fairchild
9024).

5) An exclusive OR can also be regarded as a controlled inverter as can
be seen from its truth table:

¢ I

0 0 0 C = control
6 1 1 I = input

1 o0 1 - @ = output
1 1 0

When ¢ = 0, § = I; when C = 1, §=T.

6) We can use this fact to convert a JKFF into a dual purpose FF.

I 3 ‘ —
O s ___I! T } D - J
|
l !
o |
" AT
/) \". /{ ! ) \\ /‘) P
c A" | o)) AT
When C = 1 it acts like a D FF when C = 0 and D = 0 it will retain

its old value. When C = 0 and D=1,
it will toggle.
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7) Write anggu;hzmaps for C, D as functions of RAL, RAR, CML. Note that
only one variable of RAL, RAR, CML can be true at one time. This is respon-
sible for the don't care conditions below:

C KAL , RAR ) ALhL, TAR
oc os 20 . o0 &/ /7 yae)
o| o© / — / ol o A - 4
A7y Crzy
/ & - - - / / - - —
R = rt. shift data L = left shift data

See Clare's book, Sec. 4.4 for the interpretation of the map for D

C
D

RAL -+ RAR
CML + RAR - R + RAL * L

L]

8) Draw the logic diagram for these equations and verify that it works.
cHy

T
£ A \
. //
PAL ™ [ a
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CONTROL PANEL SIGNALS (Fig. LDS8)

All of the pushbutton signals from the panel are debounced by RS flip=
flops before being sent to the edge connectoxr. By correct jumpering the
polarity of each signal can be chosen H or L when the switch is depressed.
Your panels are wired to produce L polarities on switch depression.

Some of these signals must be shortened to one pulse synchronized with
the system clock. This can be accomplished by a two bit shift register,
(A62, pin 2) and (A62, pin 12). This can be shown by the timing diagram:

DEBOUNCED
SWITCH

SYST

= L] |

Q 1lst o JM
DFF

Q 2nd

DFF e

Ql-Q2

Note that the switch must be held down for at least one clock edge. . Most
of the signals are ANDED with EUN so they will be active only when the
machine is not running.
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