
Enclosed you will find a first version of the lab manual that goes with the LD12 Computer Kit. It js intended as a supplement to a standard text on digital logic such as: 

Dietmeyer -- Logic Design of Digital Systems -- Allyn & Bacon 
Clare -- Designing Logic Systems Using State Machines -- McGraw-Hill 

It can also be profitably used in a course in computer architecture. Texts useful here are: 

Hill & Peterson Digital Systems: Hardware Organization and Design -~ Wiley 

Peatman -- The Design of Digital Systems -- McGraw-Hill 
Foster -- Computer Architecture -- Van Nostrand 
It has been copyrighted in its present forrn and duplication should be limited to educational institutions using the LD12 Computer Kit. I am actively engaged in extending the book to cover more advanced design techniques at which time I hope to publish it. 

David E. Winkel 
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(1) INFORMATION REPRESENTATION 

How do we talk to computers? Unfortunately not as easily as we talk to other people. Think of the ways humans can communicate--writing, speaking, hand signs, facial expressions, etc. One of the rude awakenings 
that new students get when introduced to the subject is how stupid computers 
are! Human thought must be transcribed onto punched cards or some other machine readable media, and even the most trivial errors (misplaced commas 
for example) will completely confuse the computer. 

But even punched cards hide the inner level of communication within a 
computer. Internally a computer understands voltages only. That in fact is why we input information on cards. Once a card is punched it is rela­tively easy to send it through an electromechanical device which will con­
vert the information punched on the card- into voltages which can be inter­preted by the computer. 

Thus, information must be transformed into forms that electronic cir­
cuits can understand. To make this perfectly clear let us consider a light 
switch which in many ways is similar to some of the elementary building blocks used to make a computer. Of course the switch understands only one 
thing--physical movement--is it on or off? Imagine two people, a room, and 
a light switch. 

Turn on 
the light. 

O.K., I 
understand. 

I don't. 

Do you see the problem? The verbal command has not been transformed 
into a form the switch understands. 

A. 

Turn on 
the light. 

O.K., I'll flip 
the switch. 

Now i'll respond. 
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Now something happens! This may seem trivial but it brings the problem into the open. 

What sorts of things do computers (and logic circuits) understand? We repeat--VOLTAGES! 

How many different voltages? TWO! 

Why only two? Because engineers have been unable to build reliable circuits for anything but two~ 

What are these voltages? 

H high 
L = low 

= approximately 3.0 volts = approximately 0.2 volts 

That only two voltages are recognized by digital logic is fundamental to the whole field. It is so important that a name has been given to it-­BINARY--which means that only two stable states exist. Examples of binary devices are: 

Switches - either ON or OFF 
Punched Cards - any given position either has a hole punched out or it doesn't 
Logic Circuits - put out either a high or a low voltage Magnetic Tape - a given spot has either a north pole or south pole pointing up 

These two different states are commonly given names of 1 and 0.* For example if the choices in the left-hand column are arbitrarily made, the meanings of a 1 and 0 are shown in the right two columns. 
If a 1 is chosen then a 1 means and a 0 means to mean 

switch is open ' switch open switch closed 
a given spot on a card hole at that spot no hole at th at is punched out 

spot 
High High Low 

a g:l:ven spot is a north pole south pole north pole 

L L H 
Again let us emphasize. You, the designer, can ch~ the meaning of a 1. Of course, you must have some way of telling the world what your 
*As the designer you can choose what a 1 means. 



choice was so your design can be understood. As we will see a standard notation has been devised to makP. your choice evident. 
Also, understand that 1 and 0 are simply names for the two states of 
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a binary device. 1 and 0 do not have a numerical meaning. You could use X 
and Y for the two names and everything would work as well. Of course it would be unconventional. 

Now we come to an important topic. Can ordinary human (decimal) num­
bers be represented by only H and L voltages? If not then it will not be possible to build a computer. The answer must be yes. 

Let us consider the process of counting, using ordinary decimal digits. 
Of course there are 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Suppose we are counting rocks falling out of a chute 

* = ROCKS 

* 
** *** 
**** 
***** 
****** ******* 
**"~(***** 
********* 

DECIMAL NUMBER 
REPRESENTING THE ROCKS 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

What do I do now? I have run out of digits. We solve this by a very clever trick called the carry. 

We get a carry of 1 out of the units column into the tens column and change the 9 to a 0. 

********** 
10 

This process always works. Suppose we have 99 rocks and 1 more falls out 
of the chute. 

9 9 
------- change 9 to a 0 1 carry 1 into the next column + 9 ..;.... __ _ 

change the 9 to a 0 
carry 1 into the next colunm 1 0 0 

We have defined a general process for counting using the digits 0 - 9. The same process will work if we have only two digits 0, 1. Now a 1 will be the largest digit you can have in any column just as a 9 was the 



4 largest digit you could have in a given column in an ordinary number. We call numbers represented in such a manner BINARY numbers. Perhaps a better 
phrase would be BINARY representation since what \·7e will be doing is repre­
senting the number of rocks by l's and O's. The same could be said about the decimal representation for the same pile of rocks which uses 0 1 s through 9's. 

* = ROCKS 

* 

BINARY REPRESENTATION 

0 
1 

What do we do now? We have run out of binary digits! 
a) Change the 1 to a 0 
b) Put a carry in the next column. 

** 
*** 10 

11 
What do we do now? Well, this is exactly like the case of 99 rocks in decimal. Both 9's were changed toO's and a 1 carry was put into the next 
column to make 100. In binary, 11 would change to 100 since in binary 11 
is the largest two-digit binary number you can have just as 99 is the largest two-digit decimal number you can have. 

***** 

******** ********* 
********** 
etc. 

100 
101 
110 
111 

1000 
1001 
1010 

We see that it really is possible to represent numbers using just two 
symbols, 1 and 0. There is a problem in that a binary 11 is indistin­guishable from a decimal 11. But a binary 11 really equals a decimal 3. We need some way to tell what kind of representation we are talking about. 
For this purpose we use a small subscript: 

binary 11 = 112 decimal 11 = 1110 
A more mathematical way of looking at either binary or decimal numbers 

is the place value system. In this system a digits value depends on the column it is in. For example, in decimal we have a l's column, lO's column, 
lOO's column, etc. Take the decimal number 432 and label the columns starting from the right with colunm 0. 

column number 2 
4 

1 
3 

0 
2 



( 

column number 

0 
1 
2 

etc. 

description 

l's column 
lO's column 
lOO's column 

In fact 432 really means (4 X 100) + (3 X 10) + (2 X 1). 
A similar thing can be done in binary except now 
column number 

0 
1 
2 
3 

etc. 

description 

l's column 
2's column 
4's column 
8 1s column 

Now 1012 really means (1 X 4) + (0 X 2) + (1 X 1) ~ s10 • 
Thus we see that a 1 represents the presence of a power of 2 and a 0 

its absence. 
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How the l's and O's in a binary number are in turn represented inside 
the computer by voltages is again the designers choice. Some designers 
represent a 1 by H, others do the opposite. The symbols used by the designer 
will make his choice clear. 

Now for another piece of jargon. The individual l's and O's in a 
binary number are called BITS (B I nary digiTS). 

The only way to feel comfortable with binary numbers is to count to 
6410 in binary. The student is urged to do this now. So you can check 
yourself along the way. 

1310 

1910 

3310 

6310 

= 

= 

= 

11012 

10011 
2 

1000012 

1111112 
Let's take a break and discuss a less weighty but related subject-­

numerical accuracy. As you know from hand held electronic calculators, the 
more digits the more accuracy you can get. The same is true for binary 
computers. The smallest have eight bits of accuracy and some of the very 
large, fast scientific machines have 60 bits. The design in this book is a 12 bit machine. 

Another bit of jargon--for our machine 12 bits of data is called a 
WORD. Thus this machine has 12 bit words whereas the Control Data 6000 
series of computers has 60 bit words. The IBM 360-370 series has 32 bit 
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6 
words. There are more PDP-8 minicomputers in the field than any other sin­gle type of computer (>25,000 installed), the PDP-8 has 12 bit words. Most new minicomputers being produced have 16 bit words since it is a nice com­promise between cost and accuracy. 

There is another parameter besides bits/words that is important in describing memories. That is the number of distinct words of data that can be stored. A fairly typical minicomputer would have four thousand (4k) words of storage. Large scientific machines may have millions of words of storage. Fortunately from a learning standpoint a small memory is as good as a large one and far cheaper. 

Now let's get back to binary numbers. These numbers are elegant since they can represent any decimal number with only two symbols, 0 and 1. Remember this is necessary for internal use in a computer. They also have several disadvantages. One of them is it takes more binary digits than decimal digits to represent a given number. For example take 1100102 • That is equal to 50 0 • It is far easier for a human to keep track oi the two digits in so10 1 than the six in 1100102. A simple shorthand has been developed for binary numbers to collapse the number of digits a human has to work with. The trick is to start at the right side of the word and group the bits three at a time. 

110 010 
6 2 

Now take each 3 bit group and convert it to a single number between 0 and 7. Now you have to remember only the binary numbers between 0 and 7. The resulting number is called an octal number. Why? (Hint: Decimal num­bers have 10 distinct digits, 0-9; binary numbers have 2 distinct digits, 0, 1). To show a number is octal we write a small subscript 8 to the right of it. Converting bet>veen octal and binary is now simple. The process is best shown by examples: 

binary ---"-> octal octal ----> binary 
1011 13 6410 110 100 001 000 11001 31 37 011 111 111010 72 14 001 100 
All of the cormnands for the computer will be given in octal because it is such a convenient shorthand. 
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(2) COMBINATIONAL LOGIC (The Logic of Here and Now) 

There are two main classes of digital logic circuits, c;,ombinational 
(sometimes called combinatorial) and sequentiaL We will need both types to accomplish our goal of building hardware that will execute a flow 
chart. 
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Combinational circuits act on information represented by H and L 
voltages and immediately produce an output. Actual circuits take a fe''' nano seconds, which is close enough to immediate (light will travel 1 foot in 
one nanosecond). This class of circuits is the simplest to understand so we will treat it first. 

In general we will not refer toO's and l's to represent our data since we are more interested in the voltage which represents it. The reason for this is simple. When you check a circuit the only thing you will be able to test are voltages. As we will see a set of symbols has been devised that gives you these voltages directly at a given point in a digital circuit. It is then a simple matter to place a logic probe at that point and get a 
visual display of the information. The logic probe used in the lab has small green and red lamps for display. When a given point is L the green lamp will turn on. The red lamp will light for a H input. 

Let us now go over the symbols which describe digital logic. 

C> D D D 
INVERTER AND OR special purpose element 

Do not worry at the moment about the function of each of these symbols. Each will be introduced in due course. Let us discuss some of the general properties of the symbols. 

1) The shape uniquely identifies its logic function except for 
the rectangle where this information is supplied by the device 
name. 

2) Inputs and outputs (copper wires) are represented by lines 
going into and out of the symbol. For example: 

3) Outputs are always on the right; inputs are always on the 
left, top, or bottom. Thus, we know that in the above example 
the wires on the left are inputs and the single wire on the 
right is an output and we can now label it as follows: 

INPUT 1 ==cr­ OUTPUT 
INPUT 2 -

Another example would be a decoder. At this point of course you 
you don't know what a decoder is. Nonetheless if I draw one 
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for you you should be able to tell which lines are inputs and 
which outputs. 

OUTPUTS 

4) The symbols are important since they quickly convey a large amount of information pictorially. The pictoral aspect 
should be emphasized. The eye can quickly encompass a large 
drawing with many symbols on it and get the overall picture. 
Just as easily the eye can zero in on a small portion of a large 
drawing and extract a great amount of detail. This can be difficult using words or even equations. Very soon you will 
be thinking of digital logic in pictoral terms since it is so 
easy and convenient. 

5) · Voltage polarities are easily shown. The convention is that a small circle represents a low voltage and its absence 
a high voltage. For example suppose I have a special purpose 
circuit called a lamp driver. It's function will be to accept 
an input voltage and turn a lamp on or off on the basis of this input. 

Such circuits are very useful in a computer since they can 
be used to visually monitor a signal. 

a) 

b) 

Let us now try to represent a lamp driver graphically: 
It is a non-standard circuit. Therefore, its symbol will be a rectangle. Of course, a bare rectangle doesn't tell you much so we put a name inside it which describes its function. 

Its output is on the right side of the box. Since its output is light and not a copper wire no output line has been drawn. An implied output (light) nonetheless exists. c) One vital piece of information is still missing. What kind of an input voltage turns on the light? In all of the lamp drivers used on your lab kit a high voltage turns on the lamp. Therefore, it would be drawn as below: 

-----!~LAMP 
l_nRIVER 

8 
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d) At this point review a) - c). You should be able to look at the above symbol and extract the following pieces of information just from the picture: 
1.) it is a special purpose circuit (shape) 2.) presumably it turns a light ON or OFF (from its name) 3.) a high voltage will turn the light ON (its input line has no small c ire le on it) 

It is perfectly possible to design a lamp driver that will turn the lamp ON when the input voltage is low. In fact in your lab kit this could be done simply by unplugging the 7406 lamp driver IC (integrated circuit) and substituting a 7407 IC. How would this circuit be represented? 
Small circle tells you that a low voltage is required to turn on the lamp -4...___LD_____. 

6) Note that the graphical symbol also suppresses much irrelevant 
information. It does not tell you what's inside the lamp driver. 
In fact we do not care. It could be transistors or perhaps a gremlin as long as the lamp was reliably turned on or off. The student should get used to looking at symbois as logical building 
blocks and forget about their internal workings. We are con­cerned only with the logical process of building a computer by interconnecting such building blocks. 

One of the marvels of modern technology is the IC (integrated 
circuit). They are cheap, compact logical building blocks which have been carefully designed so that very diverse IC's can be interconnected without worrying about impedance matching, and all the other black arts of electrical engineering. 

One last word of reassurance. Even professional computer designers are not concerned with the internal construction of an IC. If you are still not convinced take several years of high level electronics courses. But be warned--you won't be a better computer designer by virtue of your knm.;ledge of the inner workings of IC's. 

Let's define one more special purpose device and then experiment by 
connecting them together. The lamp driver required an input to activate 
it. We will design a special purpose circuit which produces an output 
which in turn can be input to the lamp driver. 

Absence of a small circle indicates the output will be high when a red gorpsch is detected 

From the above picture we can determine: 
1) It is a special purpose circuit. 

9 
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2) Its input is implied on the left. Since there is no input wire there must be some other means of inputting information to the device. (Perhaps there really is a gremlin sitting inside looking out a window on the left side. When he sees a red gorpsch he throws a switch which drives the output line high.) 
3) The output will be H if a Red Gorpsch passes near the detector. 

Let's take the two devices and hook them together. 

[RGD I ---1 LD J 
When will the la.mp light? 

a) Only when a red gorpsch passes near the detector. In that case the RGD output will go H and that is the polarity needed by the lamp driver to turn on the light. 
b) Note that ~ a red gorpsch will produce a H output--a green gorpsch would not, nor would a red elephant. Suppose a green gorpsch passed near the RGD. Its output would be L and the lamp driver would turn the lamp off. 

Now suppose we redesign the lamp driver so it will turn on the light when its input goes L. Again we hook the two devices together. 

R G D I ~~ L D 

\Vhen will the lamp light? The light will be on only when the lamp drivers input is L. Since the RGD is a binary device it always outputs ei~her a H or L. Its output will be L if there is NOT a red gorpsch. 

We have just been introduced to the NOT operation of logic. This is a fundamental concept and we must explore it thoroughly. 
First let us describe how we talk about the NOT operation. Suppose we have the red gorpsch detector by itself. 

~--R--G-D----~~~------~-G __ __ 
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It would be logical to label its output line RG (standing for red gorpsch). A line labeled RG has no meaning by itself since we do not knmv whether an H or L represents a red gorpsch. To decide that we must trace it back to its source which will tell us its polarity. In this case RG = H. 
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11 There are only two voltages this line can have. The other one has to 
be L which corresponds to red gorpsch not. We write red gorpsch ~as Ra. 

The crux of the matter is: 

A LOGICAL NOT EXISTS WHENEVER A SIGNAL IS USED IN THE OPPOSITE POLARITY FROM ITS GENERATED POLARITY. 
To remind ourselves that a logical not has happened we put a slash across the signal line. 

logical NOT 

means this line will 
be H when I have a 
red gorpsch 

means the same line 
will be L when I have 
red gorpsch not 

Note: There is no special integrated circuit required to perform the logical 
not operation. It happens ANY time a signal is used in a polarity opposite 
from its generated polarity. 

The logical not operation is important in digital logic for the same reason it is used in human thought. Many times it is easier to organize your thoughts if a certain condition is not true. An example would be: I 
will take a trip next week if my car does not break down. Most of us prefer 
to think that way rather than thinking of all the complications that could 
arise if it did break down. The concept is sharpened considerably in math­
ematics·. or programming where we may wish to alter our course of action on 
the basis of something being not true. 

The same thought processes are used in digital logic. In the computer 
you will build, it is necessary to determine if the accumulator is equal to 
0. (All 12 bits equal 0.) As you will see when you start to wire that section it seems more natural to compute AC I 0. It is certainly true 
that 

AC == 0 is the same as AC ¥ 0 
Suppose AC I 0 was generated H. 

circuit to detect 
if AC I 0 

AC I 0 

this line 
high if AC I 0 

7/Ac=oc l 
----- I 

same line will 
be low if AC = 0 
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If we want the not of AC :f 0 we must draw a slash across the line to remind ourselves that it must be used in a polarity opposite to its generated polarity. 

~--------J~--A~C~~~O-

'--------'~c 'I 0 /Ac = o 0 
I 

Now we come to another problem. We knm~ that the circuit that is going to use Ac ¥ 0 as an input will have to accept it as a L signal. Suppose it expects its inputs H? We need a device (called an inverter) that \vill fix up the polarity to be what we want. It has the property of outputting a signal of opposite polarity to its input. 

Its symbol is: 

-{>-
INVERTER 

This device will accept an L input and produce an H output. Of course i.t will also accept an H input and produce an L output. 
Both behaviors are of course implied in the graphical symbol. As drawn, the behavior for lmv inputs is emphasized. 

An entirely equivalent representation of the ~arne device would be: 

This symbol describes the behavior of an inverter for an H input, which produces an L output. Of course an L input will produce an H output. 
Convince yourself that in fact: 

is identical to 



Why draw it two different ways? The logic you are building will naturally dictate which representation to use. Let us reconsider the example of AC = 0. We go through the following steps: 
1) We have a logic block which expects AC = 0 to be input as an H signal. 

2) With the IC 's commonly available we find it more natural to compute AC f 0 which is represented by an H signal. 
3) We must do a logical NOT operation on AC f 0 to get AC 0. 

Logic block that 
computer AC f 0 as H 

output 

logic NOT required 
to get AC "' 0 

/ 
/ 

_r::-bloc-k tha~ usesl 
~/ ~0 as an H input 

PROBLEM 
polarities 
don't match! 

4) Solution: Place an inverter in the line to fix up the polarity. 

5) In this case there is only~ natural way to draw the inverter. Since the signal AC = 0 is produced with an L polarity and we want to use it with an H polarity, we draw the inverter in a form which emphasizes its behavior with L inputs, namely: 

{> 
To review these concepts suppose we have two different red gorpsch detectors RGDl and RGD2 with the following properties: 

Also assume two different types of lamp drivers, LDl and LD2: 

-{ LD~ J~2l 
~-__] 

13 
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Let us hook up all four possible combinations and ask when the lamp will be ON. 

R G D 1 ILD 1 I 
red gorpsch 

R G D 1 l 
_j I 

£ 

4 L D 2 I 
red gorpsch not 

R G D 2 

F 
I 

I L D 1 J ? 

R G D 2 

F 4 L D 2 ? 
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Do the same four cases but with an inverter inserted between the RGD and LD. 

R G D 1 L D 1 red gorpsch not 

G_G D 1 i.' C>o--1 L D 2 red gorpsch 

R G D 2 ·-I LD 1 ? 

R G D 2 L D 2 ? 



15 (3) THE LOGICAL '~ND" 

English has .several words used to express logical relationships. Without these words it would be difficult to speak. Try it without the following words: NOT, AND, OR, GREATER THAN, LESS TP.AN, EQUAL, etc. 
Logic has similar constructs but a more limited vocabulary. In fact there are just three, NOT, AND, OR. We have covered the logical NOT opera­tion in Chapter 2. 

The definition of the logical AND is: 

THE OUTPUT WILL BE TRUE IF ALL INPUTS ARE TRUE • 
The definition of true follows the usual rules. Small circles repre­sent L voltages. A non-circled line represents an H voltage. AND gates come in many flavors. The common AND gates and their IC catalog numbers are: 

NAME 

2 input AND 
gate 

2 input AND 
gate 

2 input AND 
gate 

3 input AND 
gate 

4 input AND_ 
GATE , 

8 input AND 
gate 

SYMBOL 

~ 
~ 

-~ 
_lL_;r~-

D -

CAT. 1ft 

7408 

7400 

7402 

7410 

7420 

7430 

BEHAVIOR 

Y will be H if A AND 
B are both H 

Y will be L if A AND 
B are both H 

Y will be H if A AND 
B are both L 

Y will be L if A AND 
B AND C are all H 

Y will be L if A AND 
B AND C AND D are all 
H 

The output will be L 
if all inputs are H 
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There is an equivalent way of describing the logical AND function. It is called the truth table for thP device. All possible combinations of inputs are listed in a table and the output for each input combination is listed on the same line. Note that the truth table gives exactly the same 
INPUTS OUTPUT 
A B Y 

L 
L 
H 
H 

L 
H 
L 
H 

L 
L 
L 
H 

7408 

D-

information about the 7408 as the graphical symbol. The symbol says that the output will be H only if A AND B are H. All other combinations will give an L output. The symbol has the useful property of emphasizing the last line of the truth table. As a designer if you need a logical AND in fact it is more natural to think only of the last line of the table. Again we see that our symbols help out thought processes by emphasizing only the relevant information. 
The truth tables for the other AND gates are shown below: 

7400 7402 7410 
A B ty A B y A B c y 
L L H L L H L L L H L H H L H L L L H H H L H H L L L H L H H H L H H IL L H H H 

H L L H Note that the three input AND H L H H truth table has t·wice as many input H H L H combinations as the two input gates. H H H L This makes the truth table incon-veniently long. As a result, truth tables are seldom used for gates with more than three inputs. How many input combinations are there for the 7430 gate? 

Now let us wire up some simple circuits. Assume we have t>vo detectors and a lamp driver with the properties shown by their graphical symbols . .-----·---
PINK 

ELEPHANT 
DETECTOR 

r------------~ J RED 
GORPSCH I-----

DETECTOR 

--~ 
This circuit will light the lamp only if a red gorpsch AND a pink elephant are near their respective detectors. Suppose we want to modify the above circuit to light the lamp only if we have a red gorpsch AND NOT a pink elephant. Go through the following thought processes: 

1) We must have a logical AND. Choose a 7408 AND gate and draw it in the middle of the page. 



,' 

( 

2) The output polarity of the 7408 matches the input polarity of the lamp driver so they can be connected. 
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3) The output polarity of the red gorpsch detector matches the input polarity of the 7408 AND gate so these points can be connected. 

4) We know we need a logical NOT operation on the output of the pink elephant detector. Draw it. 

P ED ~ 
_j_~ [2] -------,_ 

I RGD 

5) Now we need an inverter to change the polarity of FE to the high required by the AND gate. 

P E D 1----;r-1-{>-

..__R_G_D _ ___;r 
This completes the circuit. · 

Let's repeat the above example using the 7400 AND gate. 
1) Place the 7400 in the middle of the page. 
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2) The 7400 output doesn't match the input polarity of the lamp driver. It must be changed to the polarity expected by the lamp driver. 

L D 

3) The rest of the circuit is identical to the first example. Let's repeat the above example using the 7402 AND gate. 
a) 

D 
b) The output of the 7402 matches the input polarity of the lamp driver--connect them. 

L D 

c) The output of the pink elephant detector has to have a slash to create ~. The resulting polarity matches the input of the 7402. 

PE 
P ED 

L D 

R G D 

d) The polarities of the RGD and the 7402 don't match so we must insert an inverter to change the polarity of the RGD. 

8-----f--~ 
B--f> ~) ---i[~ 

18 
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THE BOOLEAN ALGEBRA OF THE AND GATE 

There are several fundamental truths about the AND gate which can be neatly summarized by boolean algebra. This is the algebra of binary logic. In all of our previous work we have considered these two values to be H and L voltages. One can conceive of other digital logic syste~s where the variables are not voltages. An example would be a relay system where we are concerned with a relay contact being OPEN or CLOSED., Boolean algebra abstracts all binary systems by defining two logical variables 1 and 0. The boolean 1 and 0 can then represent H, L voltages or relay contacts being OPEN or CLOSED. A boolean 1 or 0 must not be confused with an ordi­nary numerical 1 or 0. Instead a boolean 1 is to be interpreted as a logical TRUE and a boolean 0 as a logical FALSE. We have already discussed how the correlation of TRUE and FALSE and voltages is to be made. An output or input with a circle is defined to be TRUE (boolean 1) for an L voltage. An output or input without a circle is defined to be a boolean 1 for an H voltage. The same convention holds for input polarities. 
In terms of boolean variables the AND gate is defined by the following truth table: 

A B y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Each of the AND gates previously described has an identical boolean truth table•.when the input voltages are interpreted as boolean l's orO's according to the graphical symbol. Let us consider all of the two input AND gates and prove this statement for all of them. 

A B y 
L L L 

= L H L 
H L L ·, 
H H H 

= 
(if l=H. 
for A,B,Y) 

A 
0 
0 
1 
1 

B y 
0 0 
1 0 
0 0 
1 1 

Since all of the inputs and outputs are non-circled, a boolean 1 is to be interpreted as an H voltage. If the above truth table is rewritten in terms of l's and O's the boolean AND truth table results. 

A B Y (if l=H A B y v· L L H \.:for A,B) 0 0 0 
_: ... 

-·· L H H = 0 1 0 ,:, . 
H L H (and l=L. 1 0 0 H H L for Y) 1 1 1 

J . Rewrite this v0ltage truth table using an,H = 1 for inputs A, Band L = 1 for Y. 'Again you get tqe standard truth table for the boolean AND. 
The 7402 gate shown on the following page.is left as an exercise for the reader. 
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y 
J!_ __ _;; 

Now for some boolean algebra. The important theorems are listed below: 

1 • 1 = 1 

1 . 0 = 0 

A • 1 =A 

A ·A= A 

Look at the truth table for the AND. The only case A • B could possibly be different from B • A is if different from A. In other words A = 1 and B = 0. the truth table we see that 1 · 0 = 0 and also 0 . QED. 

where 
B was 
From 

1 = 0, 

Verify by looking at the last line of the truth table. 
Verify by looking at the middle lines of the truth table. 
if A 
if A 

if A 
if A 

if A 
if A 

-· 0, 
= 1, 

= 0, 
= 1, 

= 0, 
= 1, 

0 
1 

0 
1 

0 
1 

. 

. 

. 

. 

1 0 
1 = 1 

0 = 0 
0 0 

0 = 0 
1 = 1 

QED 

QED 

QED 

The last theorem requires a result from a logical NOT operation. The boolean algebra of the NOT operation is so simple it was not covered in that chapter. These results are: 

T o 
0 = 1 

Now we can state the final theorem on the AND. 

A • A = o if A = 1, 
if A = 0, 

A • A = 1 · 0 = 0 
A K = 0 · 1 = 0 QED 

The power of boolean algebra is it allows us to formulate these general results independently from the particular type of logic we are discussing. Although these results are very simple you should memorize them since they will form the basis of some gate simplifications later on. 
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21 ( 4) THE LOGICAL OR 

The definition of the logical OR is: 

THE OUTPUT WILL BE TRUE IF AT LEAST ONE OF THE INPUTS IS TRUE. 
Again the definition of true can be obtained from the symbol for the OR gate. Small circles correspond to L voltages. 
The common OR gates and their IC catalog numbers are: 

NAME 

2 input OR 
gate 

2 input OR 
gate 

2 input OR 
gate 

3 input OR 
gate 

4 input OR 
gate 

8 input OR 
gate 

SYMBOL 

=D-
-~ 
-~--

=L>­
~); -eLF 

CAT. 1t 

7432 

7408 

7400 

7410 

7420 

7430 

BEHAVIOR 

Y will be H if A OR B 
(or both) is H 

Y will be L if one OR 
more of A, B is L 

Y W) '.1 be H if one OR 
more of A, B is L 

Y will be H if one OR 
more of A, B, C is L 

Y will be H if one OR 
more of A, B, C, D is 
L 

the output will be H 
if one OR more of the 
inputs are L 

As for the AND gate we can write a truth table for the OR gate. The truth table is an equivalent way of defining the device. Consider the 7432 

A 
L 
L 
H 
H 

Bn L L 
H H 
L H 
H H 



( 

Note that the symbol emphasizes the last three rows of the truth table. This says the output will be true if either OR both the inputs are true. 
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The first row is implied by the symbol but if you are designing actual hard­
ware and need an OR gate you are not explicitly concerned with the first row. 

The truth table for the 7400 is: 

A B y 
L L H 
L H H =D---
H L H 
H H L 

In this case the symbol emphasizes the first three rows of the truth table. 
It is just these three rows that embody the logical OR function for this device. 

Let us consider some simple examples using OR gates: 
Draw a circuit using a 7432 gate that will light a lamp when I have either a red gorpsch OR a pink elephant. 

1) Since the OR gate is the central part of the problem draw it in the middle of the page 

~ 
I R G D J 

2) Since all polarities match all connections can be made directly. 

·~-------'~) )~L D I R G D ,I 
J 

Draw a circuit using a 7400 gate that will light a lamp when we have either NOT a red gorpsch OR a pink elephant. 
1) Lay out the circuit graphically, indicate polarities on each symbol. 

L~ 
r---l I R G D_J L___ ____ _ 

D 



( 

2) The polarities of the 7400 output and lamp driver match--connect them. 

P ED 

L D 

R G D 
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3) The polarities of the pink elephant detector and the input of the 7400 don 1 t match. Insert an inverter to ''match up" the polarity. 

4) Take care of the NOT operation on the red gorpsch line. This means a slash must be put on the output line from the red gorpsch detector. Remember the meaning of the slash--polarities must differ on either side of the slash. This is already true so a director connection can be made. 

P E D 

-1--1 ;:o-1 

L D l RG D l 
Build the same circuit using the 7402. 

THE BOOLEAN ALGEBRA OF THE OR GATE. 
The boolean definition of the OR gate is shown by the following truth table: 

A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

y 
0 
1 
1 
1 

Each of the OR gates described previously has an identical boolean truth table when the input and output voltages are interpreted as boolean 1's and O's according to the symbol. Let us prove this for the two input gates. 



The student should do the same exercise for the ~408 OR gate. 
Let us consider some boolean algebra for the OR gate. The symbol for the boolean OR is a +. This should not be confused with the arithmetic plus. Since in digital logic we deal far more often with the OR than with the plus we give plus a special symbol (+). Thus: 

A+B means A OR B 

A (+) B means arithmetic sum of A and B 
The theorems for the OR are listed below: 
A+B=B+A This can be verified by looking at the truth table defining the logical OR 

0 + 0 = 0 First line of defining truth table. 
1 + 0 = 1 Second and third lines of defining truth table. 
A+O =A if A = 0, 0 + 0 0 

if A :=. 1, 1 + 0 = 1 QED 

A+ 1 = 1 if A = 0, 0 + 1 = 1 
if A = 1, 1 + 1 1 QED 

A +A= A if A = 0, 0 + 0 = 0 
if A = 1, 1 + 1 = 1 QED 

A +A = 1 if A = 0, 0 + 1 = 1 
if A = 1, 1 + 0 1 QED 



/ 
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DeMorgan's theorems: These are two very important theorems which you will use so often they will become automatic. In each case we will prove them by means of truth tables which is not the most sophisticated proof but is the simplest. Further it will give you more experience handling boolean truth tables. 

THEOREM 1: 

PROOF 

A•B = A+B 

a) Form the truth table for A · B. b) Complement the column ~ to obtain the left side of the above equation. 
Note that complement is another name for the logical NOT. Note that x-:-B f A · B which you should prove by filling in the truth table for X • "B. 

A B A·B A•B 
0 0 0 1 
0 1 0 1 
1 0 0 1 
1 1 1 0 

c) Form the truth table for A + B and compare with b). 
A B A B A+B 
0 0 1 1 1 
0 1 1 0 1 
1 0 0 1 1 
1 1 0 0 0 

The last columns of b) and c) agree; therefore we have proved DeMorgan's First Theorem. 

THEOREM 2: A+B = A·B 
The proof proceeds in the same fashion. 

A B A B A+Bi A+BIA·B 
0 0 1 1 0 1 1 
0 1 1 0 1 0 0 
1 0 0 1 1 0 0 
1 1 0 0 1 0 0 

What relationship do DeMorgan's theorems have to AND, OR gates? Said in words the theorems say: 

IF ALL INPUTS AND OUTPUTS ARE INVERTED, AND and OR WILL BE INTERCHANGED. 
Symbolically: 

D D 



A 
L 
L 

~H 
~,:;,.H 

B 
L 
H 
L 
H 

y 

L 
L 
L 
H 

This is true as we'll show by 
using voltage truth tables: 
The AND symbol emphasizes the 
last line of the truth table 
(the AND line) and implies the other three lines. 
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Now let us take the first three lines of the same voltage truth table (the OR lines) and represent their behavior with a graphical symbol. 
A B 
L L 
L H 
H L 
H H 

y 

u 
H 

We see that the AND and OR symbol emphasize different parts of the same truth table. Of course either symbol implies the entire truth table. Still as designers we will be thinking of AND or OR functions. YOUR SYMBOLS SHOULD P-EPRESENT TEE TYPE OF GATE (AND or OR) THAT YOU V..TERE THINKING OF WHEN YOU DESIGNED THE CIRCUIT. THE STI1BOLS WILL IN TUP~ INDICATE THE POLARITY REQUIRED TO MA.KE THEM ACT THE WAY THEY AHE DRA.WN. 
This concept is so important that we will illustrate it for all of the commercially available two input gates. 

CAT. 11 SYMBOL VOLTAGE TRUTH TABLE EQUIVALENT S~IDOL 
7400 A B y 

L L 
H1 -cL>--=L)-- L H H ----:?_~ 

~-~~ L HJ . 
H L 

7402 A B y 

./Z--~~ L H 

=L>--:o- H L -. 
H L ~r~ H H 

7408 
~-my. L L L 

_ L H L 1--:z __ ~::>--
-.......__'< H L I L ) --cL~ ·-~H H H 



7432 

-u- A 
___,. L 

~ L 
H 
H 

B 
L 
H 
L 
H 

y 

THUS WE CAN USE ONE AND THE SAME GATE AS A LOGICAL AND or A LOGICAL OR BY GIVING IT INPUTS OF THE PROPER POLARITY! 

27 

This is not restricted to two input gates. For example the 7410 can be represented in two equivalent forms. 

The student must learn to "change gears 11 automatically when thinking of AND or OR gates, since this will allow you to simplify circuits. 



28 (5) LOGIC EQUATIONS 

As you have seen we have devised a very nice graphical way of repre­senting digital logic circuits. The pictures tell us what operations (NOT, AND, OR) are taking place and also what polarities are at any point in the circuit. This pictoral representation called a LOGIC DIAG~~ is the most useful way of portraying a circuit that is already built. 
Unfortunately it is a rather cumbersome way to do the initial design of a circuit. A more compact way to represent the boolean operations is required. This information can be represented by boolean equations. Again we will find that they are tailored to certain applications. They are use­ful precisely because they emphasize certain things and suppress irrele­vant items. One thing suppressed is voltage polarity. Indeed, from a preliminary design viewpoint we are interested in implementing AND's, OR's, NOT's, etc., and are not concerned with polarities. Of course when it comes time to build or debug a circuit then polarities are all impor­tant. At that point a logic diagram will be needed. This chapter will be devoted to translating logic equations!£ logic diagrams. 

The symbols used to write equations are divided into two classes: 
Variables: These are simply the names of signals. Examples would be: A, A39, AC LOAD. A superficially more complex name would be AC=O. Such a name tells you the condition that will make the line true. For AC=O it would be true only if all bits in the accumulator were = 0. Note the = sign is part of the name in this case. 
Operators: 

+ 

( ) 
= 

logical AND 
logical OR 
logical NOT (this is an overscore) parenthesis (used as in ordinary algebra) equals (used as in ordinary algebra unless it is part of a name) 

Let us consider some simple examples: 

An equivalent way of repre- A B F senting the same information 0 0 0 would be a logical truth 0 1 0 table: 1 0 0 
1 1 1 If you want to build a 

logic circuit to generate F you must provide two additional pieces of information: 

a) What type of AND gate you will choose from the IC catalog b) What polarities A, B, and F will be represented by. 
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Suppose the gate is a 7400 and TRUE for A, B, F is represented by H. Now the circuit can be dravm 

A -D--V--,F 8 

Another example: F = (A + B) • (C + D) 
The parenthesis tells us that A + B must be generated as an inter­mediate signal, as must C +D. Then these two intermediate signals must be ANDed. Again suppose F, A, B, C, D are all TRUE when H. Also suppose the 7402 is chosen for the gates. All three gates are 7402 's. We have used 

DeMorgan's theorem to 
represent the same 
gate in its most 
natural form at each 
place in the circuit. 

Such simple examples do not really express the power of boolean equa­tions. ·Before we can go to more realistic examples it is necessary to consider the implied priority of the different operators. Consider: 

This could mean: 

F =A • (B + C) 
F = (A • B) + C 

(+has more priority than •) 
(• has more priority than +) 

The proper interpretation is the second. We can formalize this in a table of priorities (hierarchies) the most "powerful" operator being at the left: 
NOT AND OR 

( ) 
+ 

Let us now derive a circuit that will generate F = A • B + C where TRUE is represented by H and we choose 7400 gates for implementation. 

~ ==r=>---~·-----...... F 

c ~___. 
Let us implement F = A • B + C where TRUE for each variable is defined by F = H, A = L, B = H, C = L. 

Again let us choose 7400 gates for implementation. 



\.. 

A--u 

.B-----

This logic diagram looks very different from the preceding one. Yet, it 
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is the same boolean equation that is being implemented. The difference is caused by the differing polarities chosen to represent TRUE. Still another factor that could change the appearance would be to choose a different gate to implement the circuit. Suppose that 7402's were chosen and the polar­ities are the same. \~e see that it takes two more inverters to implement the same boolean equation. It is generally true that one type of gate will be more "natural" for a given situation. The designer should exploit this by choosing the type of gate which minimizes the number of inverters. 

~-------1~-.o~--------~D---{>- r 
c-{>-- [ 

Logic equations can also be used to state general theorems. A fevJ of these theorems should be memorized since they will allow you to build cir­cuits with fewer gates. 

The important theorems are listed below: 
la) A + 0 =A 
2a) A + 1 = 1 
3a) A +A =A 
4a) A +A = 1 

lb) A • 1 =A 
2b) A • 0 ::: 0 
3b) A • A = A 
4b) A A. = 0 

These theorems have already been discussed in the chapters on the logical AND and OR. They should be at your fingertips since it is unfor­givable to convert one of these equations to gate form. 
5a) A (A + B) = A 5b) A + AB =A 

Note that when two single letter variables such as A, B are \vritten side by side the AND is implied thus AB = A • B. This is true only if the variables are named by singl~ letters. 

These boolean identities can be proved by truth tables. For example 5a): 

We see that the columns 
for A and A • (A + B) 
match QED. 

~A+B A(A+B 
~ 9 1 o o o 1 1 1 o 
1 o 1 1 1 
1 1 I 1 I 1 
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Alternatively they could be proved using boolean algebra. For example 5b): 

A+ AB = A(l + B) = A· (1) A 

6a) A (A + B) = AB 6b) A + X:B = A + B 
6a) is easy to prove using boolean algebra: 

A (A + B) = M + AB = 0 + AB = AB 

7a) 1CB = 1r + "B" 7b) A + B =A • B 
These are simply DeHorgan's theorems. 

8a) AB + AB =A 

This is an important theorem which is the basis of the Karnough Map sim­plification. Its proof is simple: AB + AB = A(B +B) =A • (1) =A. 
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32 (6) USEFUL STRUCTURES BUILT FROM GATES AND INVERTERS 

The human mind works best when irrelevant material can be suppressed. We have already seen how each of our various ways of representing digital logic emphasizes certain things and de-emphasizes others. Consequently, we use the description that best suits the task at hand. 
The next step up this ladder is to combine gates into tures. Once we do this we can give this structure a name. human mind can then use the new structure easily. We will most of the common items used in computer architecture. 

useful struc­
Once named the 

describe and name 

A) EXCLUSIVE OR 

This is a logic function of two inputs and one output. The defini­tion can be given either by a truth table or a boolean equation. We will do both, but we must first give it a boolean operator symbol which is EB. 

A B AEBB which is equivalent to 0 0 0 A EBB -= A1J + irB 0 1 1 
1 0 1 
1 1 0 

From the truth table we can see that it is identical to the logical OR except it excludes the case A = B ;;:: 1. 

The exclusive OR is used enough to warrant its production as a special integrated circuit, the 7486. The graphical symbol is modified from the normal symbol of the logical OR: Note also that it has only two inputs. 

a) Use as a controlled inverter: This technique should be in every designer's bag of tricks, especially since it is so simple. Suppose we wish to pass a signal (A) unchanged when a control signal (C) is 0 and invert A when the control signal is 1. 

This is the exclusive OR de fin it ion as we can show from the truth table: 

c A A Etc when c=o AEI'c =A 0 0 0 when c=l AEJ;c =li: 0 1 1 
1 0 1 
1 1 0 

b) Use as a comparator: Look at the truth table again and you will notice that the output of A EBB is a 1 only when A :f B. Therefore, all we have to do to see if both bits are the same is take the logical NOT of the output. 
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(L only when A = B) 

c) Use as a parity generator/checker: Parity is a reliability feature that is used on most computers. The philosophy behind it is to try to give an automatic warning when some component of the computer fails. One common device that is parity checked is memory. The common failure mode of memory is that one bit will always come back a 0, the other failure mode is for it to always come back a 1. Some examples are: 

good 
memory 

INPUT 

0011 1010 0001 

bad memory 0011 1010 0001 

bad memory 0011 1010 0001 

OUTPUT 

0011 1010 0001 

0011 1010 0000 
(last bit 
always 0) 

1011 1010 0001 
(first bit 
always 1) 

Of course with a good memory you will always read back what you stored. When the memory goes bad you will either "PICK UP" or ''DROP" a bit. How could you check for this? Consider the original word stored in memory 0011 1010 0001; it has 5 bits =1. Note that 5 is an ODD number. If the last bit is dropped the number returned from memory will be 0011 1010 0000 which has 4 bits = 1 which is an EVEN number. If a bit is picked up, i.e., 1011 1010 0001, 6 bits = 1, which is STILL an even number. Thus a bit pickup ££ drop causes the number of bits to change from ODD to EVEN. 

SUCH AN ERROR IS CALLED A PARITY ERROR. 

Of course we will not ah.;rays be storing numbers with an od<!l: number of bits; for example we might store 0010 0011 1000 which has 4 bits = 1 (EVEN), and a bit pick up or drop will result in 

33 



a number 1vith an ODD number of l's which is still a parity error. How do you distinguish these cases? You append an extra bit (the parity bit) to the original number so the total nw~er of bits (including the parity bit) is odd. For example: 

1) 0011 1010 0001 is already ODD 
final number is 0 0011 1010 0001 / '~-----/ parity bit original number 

parity bit 
total bits 

0 
= 1 is ODD 

2) 0010 0011 1000 has an even number of 1 bits; therefore the parity bit = 1 
final number is 1 0010 0011 1000 total bits = 1 is ODD /)'1 '--------v------' 

parity bit original number 
Now let us 

The parity bit 
is always odd. 
an even number 

send these 13 bit numbers to a faulty memory. has been appended so that the number of 1 bits Now a bit drop or pickup will always result in of 1 bits. 

If we had some way of looking at a number and telling whether it had an odd number of bits we could build a circuit that would detect a parity error. 

Look at the exclusive OR truth table again. It has two input bits. Its output is a 1 only if the number of 1 bits in the input is ODD. 

A 
0 
0 
1 
1 

0 0 

1 .11 0 1 
1 0 

only 1 bit of A or B is = 1 (1 is an odd number) 

Thus if we have a 2 bit number (AO, Al), we can calculate the parity bit to append to it (P, AO, Al) with the follmving circuit. 

P = H if AO, Al = L,L 
or AO, Al = H,H 

We can ship this modified number P, AO, Al to a faulty memory which may be picking up or dropping a bit. How do we tell? We take the number we get back from memory and use exclusive OR's to see if it still has an ODD number of bits. If yes, we did not have a parity error. The circuit to check this is shown be low: 
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This is a very simple parity checking circuit in that the original number AO, Al was only 2 bits. A more typical width would be the word size of the computer. For the PDP-8 this is 12 bits. How would you generate the parity bit to append to the 12 bit word? Hint: shown below is the circuit to generate the parity bit for a 4 bit word. 

Ao--------\ \)___, · 
AI----)L__/ L 

.· jD--1-{>- p /12--··-)[ 
A3----

B) THE MULTIPLEXOR (DA'J'.A SELECTOR) 
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The data selector (often abbreviated MUX) is essentially an elec­tronically controlled switch. Its function is to take many inputs, select only one of them, and route the selected one to the output. It is exactly analagous to a mechanical rotary switch as shown below: 
INPUT 0 -----------~ 
INPUT 1 

INPUT 2 

INPUT 3 

~ 
----o 

&------- OUTPUT 

With a manual switch the position is controlled by a knob. MUX's act like the rotary switch but are made of AND, and OR gates. This makes the selection process very fast since gates switch in just a few nano seconds. There are either 1, 2, r_, or 4 switch selection lines in IC MUX's. Therefore, there can be 2 = 2, 22 = 4, z3 = 8, or 24 = 16 dif­ferent inputs. We will describe these in turn: 



l) 2 INPUT MUX catalog number 74157 

5Tif'OBF 

_iLl 
~-Y 

_j 

' s 
Since it is a special purpose circuit its symbol is a rec­tangle. A, B are inputs which can be switched toY by means of the control line S. The strobe line is also important; unless it is 1 none of the inputs are connected toY. All of the following discussion assumes strobe = L. 

When S = L, A is connected to Y. When S = H, B is connected to Y. For the moment ignore strobe; what combination of AND, OR gates would implement this circuit? 

A -------·--------l\_ . r---L__J-L_u>----
;=~-·-=-=----=-D-J 

Convince yourself that this circuit does indeed duplicate the above description. How can we implement STROBE? (Remember when strobe = H, all inputs are disconnected from Y) • 

. To get the actual circuit for the 74157 we have to consider one obscure fact. Each gate input absorbs some electrical power. There are four identical two input MUX's per IC package. If we simply took four of the previous circuits and hooked all four select (S) lines to the same pin we would draw four times as much pmver from the gate which generated the S signal else­where in our computer. This v7ould LOAD that gate excessively. 
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Therefore, we use t\vO inverters on the S line. We take our select signals off of these outputs. Now we draw only one unit of power from the gate which is generating S. 

/A 

I y 18---

213 

3A--t 
3 8- --l-----+-+--l--.... 

-=l 
1!--A·------i-l~ 

ST!?OBE--c{>­

Several comments are in order: 

--3/ 

a) AND, OR gates don't look anything like a rotary switch but they will simulate it, and much faster too. 

b) You buy four of these switches per IC package at a cost of roughly $1~50. 

c) It is much easier to think of a MUX than the gates inside the NUX. After all in a computer we are going to have to route information inside the machine. Even though this is done by gates they clutter up the picture. 
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d) We could have described the MDX by means of equations, i.e. , Y = A•STROBE·~ + B'STROBE•S. 

e) We could have described the device by means of a truth table: 

STROBE s A B y Note the use H X X X L of X L L L X L X = irrelevant, L L H X H that is H or L L H X L L 
L H X H H 

2) 4 input MDX catalog number 74153 

co 
Cl 

C2 

STI[o 8[ 

A 8 
Description: I I 

y 

NOTE: the four inputs are 
called CO--C3. The select 
lines are now called A, B. 
Strobe has the same meaning as before. 

a) Y = (CO·A·B + cl·B·A + c2·B·A + c3·B·A) • STROBE 
b) Truth table 

STROBE B A co Cl C2 C3 y 
H X X X X X X L 
L L L L X X X L L L L H X X X H L L H X L X X L L L H X H X X H L H L X X L X L L H L X X H X H L H H X X X L L L H H X X X H H 

c) As an exercise draw a. logic diagram using AND, OR gates that implements a, b above 

3) 8 input MUX catalog number 7.:a51 

4) 16 input MUX catalog number 74150 
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These are identical devices to 1 and 2 except for the increased number of inputs. Figure 6.1 is the logic diagram of the 74151 MDX. 
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Fig. 6.1 

f)O---- ~ 
------1 }-- 7.Y / s / 

D I-----t-----

02 --------+-+--

[}1/---

( 

'D(;,-

D7--·-l---· 

S7tf08 £ 



NOTE: Y outputs are circled on 150, 151 
Y outputs are ££Circled on 153, 157 
W output on 151 

One last point: Some authors use a triangle to represent a MDX. For example the 74153 would be shown as: 

co l~~ 
c J ____ j 

C2----

C3--­

C) THE DECODER 
A 8 

I 
57 ;fOil£ 

>---y 
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Often we will have to look at a collection of bits and pick out a certain combination. For example in the laboratory computer project the left three bits of a c01mnand word tell what kind of instruction it is. Let us label this three bit field IRO, IRl, IR2. The possible combinations and their meanings are: 

IRO IRl IR2 INSTRUCTION 
0 0 0 AND accumulator and memory 0 0 1 TAD accumulator and memory 0 1 0 ISZ increment and skip if zero 0 1 1 DCA store and clear accumulator 1 0 0 JMS jump to subroutine 1 0 1 JMP jump 
1 1 0 I¢ input output instruction 1 1 1 NMR non-memory reference instruction 

Now the question is how do we tell when we have a given instruction? This can be most easily shown by a boolean equation. For example: 

NMR = IRO•IRl•IR2 since NMR is the only instruction with all bits TRUE. 
Satisfy yourself that each of the following equations is correct: 

I¢ = IRO·IRl·IR2 

JMP = IRO·IRl.IR2 

----JMS = IRO·IRl·IR2 

DCA = IRO•IRl.IR2 

ISZ = IRO·IRl•IR2 

----TAD ::: IRO·IRl·IR2 

------AND = IRO•IRl·IR2 

This process is called 
instruction decoding 
and the circuits to 
accomplish it are 
called decoders. 
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Let us build a decoder to detect the presence of the DCA instruction. Assume that IRO, IRl, IR2 are TRUE when Hand DCA will be true when L. 

DCA = IRO·IRl•IR2 

IX'o ·---[::::»-~::/_; __ -D-PCA 
For JMS IRO·IRl·IR2 

~:~ ===[>-~ THS 
Z.f' 2 ·--. --[>----------------------L_// 

Decoding all eight instructions would take six more circuits analagous to the two above. The integrated circuit manufacturers have been nice enough to package all eight of these circuits into one IC. 

The most common decoders (and therefore the cheapest) are the 7442, which decode 10 outputs and the 74154 which decode 16 outputs. Both are used in your lab kit. A schematic of the 7442 is shown on figure 6.2. The schematic .of the 74154 is identical except it has six more gates to decode the input combinations from 1010 - 1111. It also has a pair of enable terminals which must both be low to activate the decoder. 

The enable capability of a decoder is very important. For example we discussed the use of a decoder to generate a unique signal for every com­mand. It should be intuitively obvious that we would want to look at 
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these signals only during the execution portion of a computer cycle. In other words we want to enable the instruction decoder only during the execute cycle. 

At first sight the 7442 does not have this capability. However, if we choose to look at the first eight outputs only, then the D input will serve as an enable. You can see this by examining the decode gates for outputs 0 - 7, Every one of these gates has a D input. Thus they will be enabled only if D = 0. 

The student should look in a commercial IC catalog (such as the Texas Instruments TTL data book) for the logic diagram of the 74154. 

There is one more very important combinatorial circuit, the binary adder. To allow adequate space for its discussion we have devoted the entire next chapter to it. 
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(7) ADDITION 

A computer that can't add obviously isn't worth much. It is fairly easy to build a combinatorial circuit to add binary numbers. This chapter is devoted to a slow and easy introduction to the process and will culminate in an actual circuit that will add two numbers. 

In the introduction we saw how a decimal number can be represented using only O's and l's. We call the resulting representation a binary num­ber. To refresh your memory we will give the binary representation of several numbers: 

510 1012 

1710 = 100012 

3410 = 10 00102 

14310 = 1000 11112 

5310 = 11 01012 
We know how to add t>vO decimal numbers but let us review the process since we can use it as a guide to binary addition. 

Add without carries: 

34 
±_2_ 

39 

27 
+ 61 

88 
Add with 

7 
±_2_ 

12 

the 2 is how 

Here >ve can add the 5 + 4 and get a number smaller than 10; therefore, there is no carry into the lO's column. 

Again the sum in each column is less than 10; there are no carries so each column can be added independently 
carries: 

Here the situation is slightly more complex. The largest digit we can have in any column is 9, but 7 + 5 is larger than 9. We solve this by a carry into the lO's column which says 7 + 5 = 10 + 2. Remember the carry = 10 and much we have to add to the 10 to get the answer. 
It is somewhat unconventional but we can show this very nicely in the following fashion: 

7 
+5 

c-;::;-~)-SUM 

carry----... 

+ 

t Lr) 

+ 
0 

+ 



Consider more complex examples: 

6 9 
+ 5 2 
G~~SUM 
+++ 
oe~ 

&: 
+++ 
Qlf')O'I 

++ 
0 '-'> 

5 6 7 
+ 2 4 1 
(COo~SUM 
+++ 
0@0 
uju u 

80.-l 
+++ 
N..;:tl'­

++ 

The rules describing this process are: 

4 5 6 7 
+54 3 3 
~oo~sUM 
+++++ 
0~(~\~j? 
;'{~/;(~IV, II 
(~)3J:::Yd ('f) 
+++++ 
Olf')..;:t(V)r--. 

++++ 
O..;:tlf')'-0 

a) The number of different digits is 10 (0, 1, •.. 9). b) If the sum in a given column is less than 10 there is no carry into the next column. 
c) If the sum in a given column is 10 or more there is a carry into the next column. 

Analagous rules hold for binary addition: 

a) The number of different digits is 2 (0, 1) b) If the sum in a given column is less than 2 there is no carry. c) If the sum in a given column is 2 or more there is a carry. 

To show how similar decimal and binary addition are we will do the same example side by side. 

~P. 
8~ 
+ + 
or-­

+ 
0 

=111 
2 

1 1 1 
+ 1 0 1 

= 101 
2 

e=.-~ -o~-----SUM 
++++ 
o€H~:f§ 
;'/~~./u 
b'd'id .-! 

++++ 
Or-10.-! 

+ + + 
0 r-1 r-1 

= 12 
10 





These equations can be translated to hardware as shmvn below: 

c h fl 

We have changed the nomenclature slightly. A, B have been subscrip­ted with a small n to signify that we are working with colunm n of a binary number. Cn denotes the carry into column n and Cn+l denotes the carry out of this column. 

Let us enclose the above circuit in a special symbol box and shmv how adders can be connected together to add two 3 bit numbers. Label the columns as follows: 

Sz 

!l2 82 A/ 81 

~-----------"'' I' "_()_'--r---C-/N::------1 

'{ 

s 3 .$2 Sl So 
Note that c0 = 0; therefore it is tied to ground to make it always L. 
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One might think that the full adder would be available as an IC. Indeed it is; but a more common IC (7483) contains 4 full adders in a single pack·· age. The carry lines are internally connected so there are only two carry lines; C in to the 4 bit group and C out of the 4 bit group. 
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SUBTRACTION 

We could go through an analagous procedure to derive the algorithm for subtraction and finally wind up with hardware to do it. Fortunately we can use an adder to subtract. We will base our discussion on an ordinary elec­tronic calculator with 6 digits of accuracy. If one is not available you can think of an imaginary 3 digit calculator. Our immediate goal is to use such a calculator to subtract by using only the add key. 

To do this we need to define a complement number. In the following discussion we will assume our imaginary 3 digit calculator. If you have an electronic hand calculator by all means use it to do the same examples. 

of a 

To form a 3 digit complement of a number n, subtract it from 1000. 
Complement of 237 = 1000 237 = 763 
Complement of 64 1000 64 936 
Complement of 700 1000 700 = 300 

Let us subtract first using normal arithmetic and secondly by addition complement. 

514 
- 237 

277 

514 
+ 763 

1277 

514 
64 

450 

514 
+ 936 

1450 

In each case the answer obtained by complement addition is exactly 1000 larger than the number obtained by normal subtraction. This of course must be true since a complement is formed by subtraction from 1000. 

514 + (1000 - 237) = 1000 + (514 - 237) 

We see that we could do a subtraction very nicely by complement addi­tion if: a) we had an easy way to reject the 1000, b) we had an easy way to independently form the complement. 
Fortunately the first is automatic. We assumed we had _2_nly a 3 digit calculator. The 1000 lies in the fourth column so it is automatically discarded. 

The second problem is only slightly more complicated. We need some way of subtracting the number from 1000 that is so easy that is does not burden the process. The main problem in subtraction for humans is the borrow problem. If only we could devise a way to subtract column by column without a borrow we could write the complement almost as fast as we could write the original number. There is an easy way to do this: 
1000 999 + 1 1000 - 237 = (999 - 237) + 1 

Now it is impossible to get a borrow in subtracting ~ three digit num­ber from 999. You can see this by considering only one column at a time. 
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The largest digit you can have is a 9 and a 9-9 = 0 with.!!£ borrow. Since we have no borrows we can now subtract from right to :IE ft or left to right. Let's use this procedure to form the complement of some numbers. 

Complement of 237: 9 
- 2 

7 

9 
- 3 

6 

So to subtract 237 from 514 

add 514 
+ 762 

1276 

then add 1 

9 
:::_]_ 

2 

1276 
+ 1 

1277 

+ 1 

L automatically discarded 
NOTE: We have used only the addition process. (We assumed an independent easy way for forming complements). 

Complement of 64: 

514 
64 

450 

514 
+ 935 
14l~9 

9 
- 0 

9 

add 1 

9 
- 6 

3 

9 
- 4 

5 

1449 
+ 1 

1450 

+ 1 

L automatically discarded 
We call the number obtained by subtracting from 999 the NINE's complement. We define the number obtained by subtracting from 1000 the TEN's complement. Thus: TENS Complement =NINES Complement + 1 Again the reason for breaking the tens complement up into two steps is the ease of doing each step. 

Now let us see how we can handle a calculator of more than three digits. The crucial thing is the automatic discard of the one to the left of the difference: 

For 
For 
For 
For 

a 3 digit calculator use 1000 = 103 
a 4 digit calculator use 10000 = 104 
a 6 digit calculator use 1,000,000 = 106 
an n digit calculator use 1,000 •.. = lOn 

Now-that we have shown how complement addition works for decimal num­bers, we can move to binary numbers. The process of taking complements is even easier in binary. By analogy with the calculator exam­ple if our binary computer has n bits the complement will be formed by subtracting from zn. Definition: 2 1s complement of X= zn- x. 

For example suppose we have a 3 bit machine: 



( 

7 
--~ 

2 

7 
- 5 

2 

2's complement of 5 = 1000 
- 101 

11 

111 
+11 
1010 
I 

automatically discarded since have only a 3 bit machine. 
We will find that it much easier to take the complement in two steps as we did for decimal numbers. 

23 = 1ooo 2 111 + 1 111 
- 101 

010 
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NOTE: The final result is a bit by bit NOT (complement) of the denominator." Definition: The ONE 1 s complement of a binary number is formed by changing each 1 to a 0 and each 0 to a 1. 

TWO's complement of X= ONE's complement of X+ 1. 

As you can guess the ones complement of a binary number is very easy to generate electronically. Further the extra 1 to be added can be generated simply by turning on the carry in to the right most adder (for addition it is always turned off). 

We can show this process by means of a logic diagram. 

[); 

\,r' , r·' 



(8) ARITffifETIC UNIT 

We have studied most of the combinatorial elements required for a computer. The last and most important one will be covered in this chap­ter. It is called the arithmetic logic unit (ALU). Its function is to take data words and perform arithmetic operations (such as add) or logical operations (such as AND) in response to instructions from a program stored in memory. 

Building an arithmetic unit with early integrated circuits was quite a chore since only simple gates and inverters were available. Such IC's 
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are called SSI (Small Scale Integrated) circuits. Technology has progressed to the point where more complex circuits can now be manufactured. MSI (Medium Scale Integration) contains circuits of approximately 100 gates per IC. LSI (Large Scale Integration) contains approximately 1000 gates per package. The computer you will construct uses all three classes of IC's. SSI is used for implementing simple logic equations. LSI is used in the memory and MSI is used to build the arithmetic unit. 

The MSI circuit you will use is a remarkable device. It will be worth studying it in detail since it is the heart of the computer. The device is the 74181 which is capable of performing all possible logical operations (AND, OR, etc.) as well as arithmetic operations on t\vO 4 bit operands. These devices can be strung together to form arithmetic units which will handle more than 4 bits. Since our computer is a 12 bit machine, it will require three 7418l's. The symbol for the device is: 

Q r- Ao c ouT 

Fo~~ AI 
A t- A2 

A 3 ;;_j F 

80 

13' g/ 
82 s <' c <:' s " I 

-) 

83 /'1 3 2 I 0 }/ 

r I o-

A, B, and Cin are the inputs; F and Cout are the outputs. M and S are control inputs which tell the ALU what operation to perform on A, B, and cin · 

Since there are five control inputs 32 (2 5) different operations can be performed by the 74181. These are broken down into two groups of 16 based on the value of M. When M = L it will do arithmetic operations (adding) and when M = H it will do logic operations. You may wonder how these can be 16 such operations since we have discussed only NOT, AND, OR, and EXCLUSIVE OR. Let us imagine a "black box" with two inputs A, B, and one output F. The question vJe are asking is how many different kinds of ''black boxes" can there be. This in turn forces us to ask how 



Boolean 

( 
'., 

do we know when we have a particular ''black box," such as an AND gate. The answer is of course by means of the truth table that the black box produces. For example if we input all four combinations of A, B and obtain this output on F: 
A B F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Then we know that this particular black 
are exactly 16 different possible truth 

box is indeed 
table outputs 

an AND gate. There 
as shown below: 

A B Fo Fl Fz F3. F4 F5 F6 F7 F8 F9 FlO Fll F12 Fl3 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 equation 0 A·B A•B" A A·B B AEl?B A_-f:B A +B A~B B A+B A A+B 

Some of these truth tables are familiar to 

Fl = A·B 

F =A 3 

F5 = B 

We will now define some of the others: 

FB =NOR (NOT OR) 

F 14 = NAND (NOT AND) 

F9 =COIN (COINCIDENCE) 

Note that A 8 B = A EB B 

you, for ·example: 

F6 =AEBB 

F7 =A + B 

F12 =A 

FlO = B 

since F8 =A+ B 

since Fl4 =A . B 

since Fg = 1 only 

The symbol for F9 

F14 F15 
1 1 
1 1 
1 1 
0 1 
AB" 1 

if A = B 

is G • 
The other entries are of little use and we will not bother. to name them. In any event they can be expressed by means of boolean equations, for example: 

F =A • B 2 

The 74181 is capable of outputting any one of these 16 truth tables depending on the values of M and s. For example if M = H, S3 = L, s2 ~ H, s1 = H, So = L, then: 
Fo = Ao@ Bo 
F1 = A1 EP B1 
F2 =A2 EBB2 
F =A EBB 

3 3 3 
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A circuit which Hill generate all 16 possible truth tables is sho1m below: 

Sl-­

A 
g 
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- "l 

A-;o_-------~ ·]\ _____ ] 
8-LJ 

--~L~ ,--1 / 

The operation of this circuit can best be analyzed by using boolean algebr.a. Write the boolean expressions for X andY and then note that X ~y = XY + XY. Let us consider X and Y separately: 

in detail: 

S3 S2 X= ~S3·B + S2·B2 
0 0 0 
0 1 AB , 

0 AB J. 

1 1 A 

S3 S2 A·(S3·B + S2·B) 
0 0 A·(O·B + O'B 

A·(O + 0) 
A· (0) 
0 

0 1 A·(O·B + l·B) 
A· (0 + lj) 
A·B 

1 0 A· (1 · B + 0 ·B) 
A·(B+O) 
A·B 

1 1 A' (1 • B + 1 'B) 
A· (B +B) 
A· (1) 
A 



\ 

( 
\ 

§2 Sl Y=A+Sl·B + SO·B 
0 0 A 
0 1 A+B 
1 0 B +'B' 
1 1 1 

in detail: 
0 0 A + O·B + O·B 

A + 01 + 0 
A +o 
A 

0 1 A + o·'B + l•B 
A+O+B 
A -1·· B 

1 0 A + l·B + O·B 
A+'B'+O 
A + 'B' 

1 1 A+l·"B+l•B 
A + (B' + B) 
A+ 1 
1 

Now if we write all 16 combinations of S and tabulate the above values of X and Y we get : 

- -S3 S2 Sl so X y Z=XEBY =XY+XY 
0 0 0 0 0 A A = F3 0 0 0 1 0 A+B A+B = F7 
0 0 1 0 0 A+B A+B = Fll 0 0 1 1 0 1 1 = Fl5 

-
0 1 0 c AB A AB = Fl 
0 1 0 1 A'B' A+B B = F5 
0 1 1 0 AB A+B Mffi = F9 
0 1 1 1 AB l A+B =Fl3 

-1 0 0 0 AB A AB == F2 
1 0 0 1 AB A+B AEI3B = F6 
1 0 1 0 AB A+B -B = FlO 
1 0 1 1 AB 1 :A:"7B = Fl4 

1 1 0 0 A A 0 = FO 
1 1 0 1 A -A+B AB = F4 1 1 1 0 A A+'B A+B = F8 
1 1 1 1 A 1 A = Fl2 

Some of the results in the Z column are easy to obtain: 

For the first four note that 0 ·~ P = P 
For the last one in each group of four note that 1 ~ P = P 
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Also remember DeMorgan's theorems: 

A"·B =A+ B 
A-FB=A.·'B 

Some of the others are not so easy! Let us do 

z 

83 82 Sl so 
0 1 0 1 

=XEBY ::xY"+xy 

XY = AB (A+ B) 

= AB (A "B) 

=AA (B" "B) 

= 0 . B 

= 0 

XY = (AB) (A + B) 

= (A + B) (A + B) 

= AA + AB + BA + BB 

= 0 + AB + BA + B 

= B (A +A + 1) 

= B (1 + 1) 

·- B (1) 

= B 

Therefore Z = X EB Y == XY + XY = 0 EBB == B 

X y 
AB A+B 

De Morgan 

De Morgan 

It is not essential that you be able to work through the other cases if you are willing to accept them on faith. The essential things to note are that the 74181 is able to do: 

a) F = A • B d) F =A 
b) F == A + B 
c) F =A 

These are the only logical operations required in a PDP-8. More powerful computers might also use A EBB. The 74181 has four circuits identical to the last one to operate on each bit of the inputs. 

We have said nothing of arithmetic operations in the 74181. We shall be interested in only one of the 16 possible, arithmetic addition. 
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A full treatment involves the theory of carry look ahead addition and is referred to Appendix Al. We ask you to accept for the moment that you can make the 74181 add by setting M = L, S3 == H, S2 == L, Sl = L, SO == H. When you do so you force the 74181 to act as four full adders connected as follows: 
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A3 83 A2 82. A 1 8; Ao Bo ~ 
7'/-/b'/ 

<oor ~-~~~~~~~ C/~ (c,~.J- L~~~--- =:_L~~--~ ~;; _____ -=-- ~A_ I (c., l 
F3 F2 F/ Fi? 

To add more than four bits 7418l's can be hooked together in exactly the same fashion as one bit adders. 

'II II iill' '· .J.i.J_ __ j. I 

covr _ 0, ~" ~-­L_rrrr---' 
'1.1 I'll !ill_" U'l I I I ' I _;___._ __ tu1l 1_ _ J_l A 8 A 8 

ch f!f c h r----( c ~ rlf- ( h b---

·--.fn- ---mr-1 

II I I Ill! 

This is an example of a 12 bit adder and is identical to the arith­metic unit of your lab computer. The control inputs M, S3, 82, Sl, SO are not shown in the above diagram but are nonetheless implied. In fact all three 74181' s have their control .inputs chained together so they \vill all be doing the same logical or arithmetic operation at any given time. 

The complete table of operations is shmvn below. The combinations that are used in your lab computer are shown by Cf). 
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Logical Operations Arithmetic Operations 

83 M = H M=L 
- / -

i>t5 L L ®=A.__ ®=A~· ~ .. :t ____ L ____ L __ ....-H__.- F =A + B F =A + B 
L L H L F=AB F=A+B 
L L H H F = 0 F = minus 1 (2 1 s c.omplement) L H L L F = AB F = A plus A]' 

-r~tr~~r ~:') (~\ ~ :! Efj B ; : 1A m;n~~ ~l~~n~= 1 ~- H-
1.) C7f;-------:al-~ H H F = AB F = AB minus 1 

L F = A + B F = A plus AB :-1 (li't F = m ®=A plus B~---- At3 H ]'_.<' F = B F = (A + B) plus AB ./o. -t. ;e£~ ~: 1B ~ : !B P~~:u~ .!--- ~it '~Ji=~::::·:xH \..I..:::_ ____ .fl:·" F =A + B F = (A + B) plus A . c rJ~ ~) c!~<~) 'f! : ! + B ~ : 1Am;n~~ j'l~ A 
The. re~ults t~.b~rlated in the arithmetic column assume there is no carry into the low order bit (rightmost Gin in the above figure). If there is a carry in simply add 1 to the results shown in the arithmetic column. 

Note that most of the combinations are not used! You might be tempted to build a more specialized arithmetic unit to provide only tbe circled functions. Ironically such a specialized unit would be more com­plicated since it would have to be built with many SSI gates and would wind up taking many more packages than the 74181. Incidentally the thing we strive for in a design is to reduce package count since complexity, cost, and indirectly reliability are related to package count. 

As you perhaps can sense we are getting close to a full tool kit of IC 1 s. There is one type left to consider--flip-flops which will be dis­c us sed in the next chapter. 



(9) FLIP FLOPS AND I•:IEMORY 

Up until nmv we have discussed strictly combinatorial logic. Remem­ber its definition--outputs are a function of present inputs only. 
Some thought should convince you that that alone is not sufficient to build a c auputer. The essence of computing is the combination of old 
data to yield ~ data. The mere use of these terms illustrates the 
problem. Data must be stored so that it can be operated on; the new 
results must then be stored for possible later use. How can we do this? 
The answer is a flip-flop. Flip-flops can do many things 
besides store data--count for instance. Nonetheless in this chapter we 
shall discuss only one type of flip-flop which is used to store data in 
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the lab computer. We will do this so we can get a sufficient set of 
building blocks to construct and discuss a computer. After we have covered this we will come back to flip-flops in more detail. 

The flip-flop ~ve use for data storage is the "D" (Delay) flip-flop. Since it is a special device its symbol will be a rectangle as shown below: 

D -- q 
D is the data input 
Q is the flip-flop output 

CL !( 

CLK is the clock pulse used to 
load data into the flip-flop -

. The function of the device is 
to .2.tore a previous input until a new 
clock pulse arrives. The stored data 
appears on the output, Q. When a new 
clock pulse arrives the voltage on the 
D input at that time will be stored 
(entered) into the flip-flop to remain 
until the next clock pulse arrives. 
Furthermore the critical event during 
the clock pulse is its rising edge; 
this edge is the activating event 
which enters data into the flip-flop. 
If the D input is H at that time the Q 
output, Q, will be H a few nanoseconds 
later. If the D input is L the output 
Q will also be L a short time later. 

The particular device we use for 
register storage is the 74174 which 
contains six identical D flip-flops 
per package with a common clock line. 
Since our lab computer is a 12 bit 
machine it will take two 74174's to 
hold one word of data. For efficient 
operation CPU's require several 
special dedicated words of data to be 

.available at all times. These special­
ized data words are stored in flip-flop 

7'~- / 71'/- I; 

--80 .t-
1 l_jt_ __ j 
! 

c L I( 
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registers. A register is nothing more than a collection of flip-flops dedicated to storing a particular piece of data. The accumulator is the most familiar example, several others will be defined in the next chapter. The length, or number of bits per register, is determined by the computer architecture. Common sizes range from 8-60 bits. 

Large computers will have several million bits of main storage. Even minicomputers will have at least 5 x 104 bits. It is obviously impossible to use devices like the 74174 which provide only six bits/package. For the minicomputer example above, this would require 8000 IC 's. Clearly some more efficient way must be devised for storing large amounts of data. 
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There are many different technologies available which can be used for this purpose. The prevalent ones are "core 11 and "semiconductor" memory. Since it is virtually certain that semiconductor memory will become dominant we will discuss it only. 

Semiconductor memory is composed of D type flip-flops. What happens as we put more of them into a single package, such as the 74174? For each new D flip-flop two new pins (one D input, one Q output) must be put on the package. Clearly a package with 100,000 pins would .be a mess (the largest common IC packages contain 40 pins). 

What we need is some way to access several thousand flip-flops with a small number of pins. This is done by using the concept of an address \vhich selects only one flip-flop from the multitude inside the package. Consider a package with eight flip-flops. If we arranged it like the 7L~l74 this '"ould require a minimum of 19 pins (2 power, 1 clock, 8 D, 8 Q). If we relax the requirement of accessing all eight flip-flops simultaneously and are content to access only one at a time the pin count would be 8 (2 power, 1 clock, 3 bits to select which flip-flop, lD, lQ). This could be implemented as sho..;·m on figure 9.1 using a data distributor (demultiplexor) and a multiplexor. 
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The beauty of this concept is that it is readily extendable. For example a 16 bit memory could be constructed with only ~ more pin (4 addre~s bits instead of 3). In fact this is exactly what is done with semiconductor memories. 

The extended memory in your lab computer is very similar to figure 9.1 except that it contains 1024 bits (flip-flops) of storage. Another difference is the timing pulses- required- to write a- bit -of data· into it. The device is the 2102 RAM (Random Access Memory). Its symbol is shown below: 

Ao 

AI --+-

60 

AO - A9 are the 10 address lines required to select a given fliv-:flop (2lo = 1024). 

CE (Chip Ena.ble) is a line that acts like the enable (strobe) line of the MUX's discussed in Chapter 6. When CE = H none of the internal flip-flops are connected to DOUT, and the R/W line as well as the DIN line is ignored. CE is very useful in large memories where it is used to select a small subset of the complete memory. We will treat CE again when ~..re discuss assembling large memories from 2102's. 

R/W is a line used to set the read or write mode of the memory. In your lab computer we always set R/W = H which sets the 2102 to the read mode unless we wish to do a write operation. For a write, R/W = L only for the duration of the write cycle; at the end we always switch back to read. Unfortunately when a new address is presented to AO - A9 the ne\v flip -flop output does not i~~ediately appear on DOUT. The delay is called the access time and is about 1 microsecond. We must have a way of telling the computer that the memory is stable so it can trust the 'DOUT line. When the CPU wants to read a ne'\V word of data it must load the ne'IV address into a register Hhich continuously presents this address to memory. This register is the MA (Memory Address) register and is composed of two 74174 hex D flip-flop IC's. As soon as a load signal (clock) is issued to the MA register, a 1 microsecond timer is started. The output of this timer will be L for 1 microsecond after which it will go H. This timer output is called RCC (Read Cycle Complete). This is shown on the timing chart beloH: 



( 

RCC 

-«---- 1 As ------>-,-----------
'------------··-------····--_j 

DOUT 

new address 
to AO-A9 

invalid 
valid data 
on DOUT 

Write cycle timings are more complex. The data on the DIN line will be entered into the flip-flop addressed by AO - A9 on the rising edge of R/W. 

An analogous signal (WCC, Write Cycle Complete) exists for the dura­tion of a write cycle. WCC does not necessarily equal RCC. These two signals are combined to form CYCOMP (CYcle COMPlete). 

Rcc----~ 

wee --------L__/ 
which is then the memory busy signal. 

CYCOMP 

Next v1e need to discuss how such chips are assembled into a complete memory. Figure 9.1 would be de fined as an 8 word by 1 bit memory. The 2102 is a 1024 word by 1 bit memory. To form a 1024 word by 12 bit memory 12 identical memory chips are wired Irs ide by side" one chip per bit. If all chips are fed the same address, corresponding flip-flops in each chip will be accessed at the same time. 

8 
J 

T 

D..Z: 0 

8 
I 

T 

-----------·----
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We can construct still furger memories in lk increments (banks). To do this we need some way to disable all banks except the one that contains the address of interest. The bank enable must be derived from the addi­tional address bits beyond the 10 required by each memory IC. A 4k x 12 memory is shown in figure 9.2. Note that the R/W lines have not been sho\vn for drafting convenience. They are all daisy chained together so that all chips are reading or writing at the same time. 
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Fig. 9.2 
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Let us return to a further discussion of flip-flops. We have already introduced the type D flip-flop but have not talked about direct clear (preclear) or direct set (preset). The complete symbol for a common D flip-flop (~ of a 7474) is shown below: 

OS 
----1 D 

~·- --.~---~-- c!. /( 

I oc 

DS and DC are active inde~dent of the clock. This is implied in the terms direct set and di~.!:. clear. Asynchronous clear and set is another way of saying the same thing. Whenever DS is L, Q will be H. lvhenever DC is L, Q will be H. The easy way to remember·this is whenever DS is active the output closest to it, Q, becomes active. Whenever DC'is active the output closest to it (Q) will become active. The definition of active is shown on the logic diagram by the presence or.absence of small circles (DS, DC are active L; Q, Q are active H). 

The ability to direct set or clear flip-flops is useful in initiali­zing a machine. For example the CLR push-button is used to direct clear critical flip-flops in your lab computer so the machine assumes a well defined state which can later be left by the action of the CONTinue S\vitch. The use of asynchronous sets and clears should be limited to such ~nitiali­zing functions lvhenever possible since they are not synchronized to a system clock. The importance of this is discussed at the end of the chapter. 

We also need to discuss the Q terminal. Because of the internal construction of flip-flops the inverse of Q is always present and can be connected to a pin "for free 11 • We can look at this two ways: 

a) 

b) L\-r 
---[>--- Q/ 

Q will be H only 
when Q == L 
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Here we have Q represented by both a high and a lo\v polarity. Rather than label the lower output Q (which is universally done) we have labeled it Q prime to emphasize that .it is simply the other voltage representation of Q. 

The most common way of looking at flip-flops is the first. In any event the designer should be aware that either polarity is available which can save an inverter. 

The JK flip-flop 

This flip-flop is more ver~atile than the type D; its only drawback is it has two control terminals (J ,K) as compared with one for the type D whose on~y control is the D line itself. The symbol for the device is shown below: 

OS 

The Q, Q outputs are common to a 11 flip-flops including the JK; (Occasionally the Q' will be eliminated if there is a shortage of pins on the package, i.e., 74174). 

The DS, DC lines have the same function as on the type D. 

The flip-flop will make a decision every clock edge. What action is taken depends on J, Kat the clock tick. We define the state of the flip­flop after n clock ticks to be Qn· Qn+l is the state of the flip-flop after one more clock tick. The truth table for the JK is given below: 

J K Qn+)._ 
0 0 Qn 
0 1 0 
1 0 1 
1 1 Qn 

Let us discuss this truth table a line at a time. 

J = 0, K = 0: This is a very useful mode because it stores the previous state of the flip-flop even though clock pulses are continuously presented to it. This should be contrasted to the type D which will always load what is on the D line at every clock tick. 
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J = 0, K = 1: Clears the flip-flop at the clock tick. In other words it is a synchronous clear. 

J 1, K = 0: Sets the flip-flop synchronously. 

J 1, K 1: Toggles the flip-flop~ the clock tick. 

This mode is very useful in designing counters. To demonstrate the versatility of the JK we will show how it can be converted to a type D: 

r-· 

D-T I 
~J 

-7 

I{ J 
-------

if D 1 J 1, K = 0 and Qn+l 1 
if D 0 J = 0, K 1 and Qn+l 0 

In other words Q will always assume the value on the D line at the clock tick. 

There are other types of flip-flops but they are seldom used in actual hardware design. Therefore, we will leave their treatment to the reference texts. 

There is one important parameter that affects a hardware design a great deal and that is the type of clock that activates the flip-flop. By far the nicest types to use are activated by a clock edge. An edge is simply the voltage rise that occurs when a pulse goes from 1 to H. This voltage transi­tion is often represented by an up arrow: t. The fall of voltage at the 
trailing edge of a pulse is represented by a dmm arrow: ~. Flip-flops 
activated by either rising or falling edges are called EDGE TRIGGERED. A complete discussion of the advantages of edge triggering is given in your 
text. Suffice it to say that it allows the maximum time for signals to ---stabilize before they are used to make branch decisions. 
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(10) PUTTING IT ALL TOGETHER 

We have covered all of the components required in building a computer. How do we put it all together and come up with one? This brings us to the subject of computer architecture. Like any field of engineering design, its essence is the compromise of cost, performance, and esthetics. We will return to this subject at the end of the course when we have gained more perspective. For now we will describe the design process for a simple computer. The major steps of this process are outlined below: 

1) Choose the command set. 

This is the most important step of a new computer design. Unfortunately, it traditionally has been the most neglected. If designed by programmers the command set tends to be overcomplicated and difficult to implement in hard'\vare. When designed by pure engineers the command set tends to be easy to implement but difficult to program with. Some of the most successful commercial machines have abominable command sets. Some of the points to consider are: 

a) Does the command set FORCE good habits on the prograrr®er? It is becoming increasingly clear that the real cost of computing lies in the construction of error free programs. The cost of computer hardware is inconsequential. Anything that helps a programmer com­prehend and simplify complex· programs '\vill lead to 
overall lower costs. 

b) Is the command set simple? A surprisingly small set of ~·Jell­chosen commands will be adequate. Commercial machines range from about 20 to 500 unique commands. 500 commands is far too many for even competent programmers to keep at their fingertips. 

c) Does the command set force the programmer to build clean sub­routine linkages? Subroutines are the most powerful tool available for understanding large complex programs. The programmer should not have to go through an elaborate process to save registers, acquire arguments, etc. upon entering a subroutine. A counter exam­ple is a large number of registers which can be used to hold argu­ments upon entry to, and results upon exit from, a subroutine. The seductive argument is made that this speeds up the machine. This is true but it immensely increases the chance for program bugs by making it too easy for the programmer to leave critical items in registers which can later be destroyed by subroutines. Some of these bugs can be almost impossible to find. The programmer must be saved from himself! 

d) Does the command set provide for easy setup and control of loops? If you ever design a machine from scratch you should read and appreciate the concepts of structured programming. 

e) Should the command set include facilities for stacks, indexes, and indirection? These decisions can be made only in the context of the machines intended use. Host machines contain facilities for indirection and indexing. Only a few contain stacks even though they make program compilation much easier. 



f) Does the command set provide for easy input output? 

In summary command sets should be chosen by people who are familiar with modern programming and also computer architecture. A poor second is 
the team approach where the team is composed of expert programmers and 
computer architects. 

2) A set of registers must be chosen that is sufficient to implement the command set. Some of these registers are standard and exist in nearly 
every design. The standard ones are discussed first. 

a) The program counter, PC., Let us review hO'iv a computer executes 
a program. Suppose we have the following simple program which adds 
two numbers and ·leaves the sum in the accumulator. 

address command 

START LDA 

ADD 

HLT 

operand address 

A 

B 

comment 

Content of a memory address 
cohtalning A is loa~ed.into 
the accumulator. 

Content of a memory address 
containing B is added to the 
accumulator; the sum remains 
in the AC (accumulator). 

Stop the machine. 

Hemory contains t~vo pieces of data A, B and in some other loca­
tion three coramands, LDA, ADD, HLT • This program is written in 
symbolic form Hhich is done for the convenience of the programmer. 
The machine understands only binary numbers, so the symbolic addres­
ses (START, A, B) must be converted into binary numbers. This is 
done by a special program called an assembler. Suppose vJe run 
the above program through an assembler and it assigns the first 
con®and to memory location 100. The next two commands will then 
be stored in locations 101, 102. Suppose also the assembler 
assigns memory location 163 to contain A and location 177 to 
contain B. 

The above program in absolute form would be: 

command address 

100 
101 
102 

command 

LDA 
ADD 
HLT 

operand address 

163 
177 

Actually the above program is not in pure absolute form since 
the commands are still represented symbolically. Note the dif­
ference between A and the location that contains A. A is NOT 
equal to 163. A is contained in location 163. The LDA command 
will access memory address 163; take the contents of that 
memory location and load the contents into the accumulator. A 
is called the operand, 163 is the operand address. The ADD 
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command also must access memory to get an operand. The HLT 
command does not need an operand since its sole function is to 
stop the machine. To execute this program the machine must 
somehow be told where the commands are located. This is the 
function of the PC. The PC will always point to (contain the ' address of) the next command to be executed. Thus if we set 
the PC = 100 and start the machine it will access memory loca-
tion 100 and execute that command, whatever it is (in this 
case it is an LDA 163). Then PC will be automatically incre­
mented so PC = 101. Location 101 is now accessed and that 
command (ADD 177) is executed and PC is incremented. PC now = 102 and that location is accessed. The resulting command 
(HLT) is executed which stops the machine, the PC is auto­
matically incremented. Thus after the machine stops PC = 103 
and the sum of A + B appears in the AC. In flow chart form: 

[1oo ~ 
E j __ _ 

(p ) '-~---= MEM C 1'--r· ... _____ -=-:J 

~--PC+!] 
,---~----··---l 
I execute com.Inand _J------·· 
L.--~-----·----~·---

Note that the HLT command 
stops the machine by means 
independent of the PC. The 
PC always points to the next 
command to be executed. 

There is one type of command which will alter the PC and that is a jump command. Consider the following two symbolic 
commands: 

ADD 
JMP 

B 
X 

There is a fundamental difference between them. The ADD 
command requires an operand. The JMP command says jump !.2. an 
address; no memory access is required. All the JMP command 
has to do is load the new address into the PC. In flow 
chart form: 

·---·--·-·l 
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b) The instruction register, IR. When a connnand is retrieved 
from memory it must be stored somewhere so it can control the 
machine during the execution of the command. That· somewhere is 
called the IR. In the above flow chart we said: 

I command = MEN (PC) I 
What actually happens is: 

r------·-MEH (PC) --~> IR J .___ _____ ,__, _______ _ 
Ho>v the IR actually controls the machine will become abundantly 
clear as a result of your lab work. 

c) Registers associated with memory, H, MB, MA. Let us review 
memory. In all of our discussion \ve will assume semiconductor 
static RAM's (Random Access Hemory). At the 11black box" level 
memory consists of many storage cells (D type flip flops) 
which are selected by an address, and from which da.ta can be 
read or written into. 

DATA 
IN 

MEHORY 
ADDRESS 

I 
~------t MBO 

I 
I 

I 
-----------~ MB 

n 

------- . M.A. 
I 0 

. . 
·-------

H 
n 

b ' ~-----RE~Jlf~-!!~E ______ _ 

DATA 
OUT 

The memory address is held in a register called the MA. The 
width of this register is determined by the number of \vords in 
the memory. A 10 bit register will address zlO = 1024 unique 
memory locations. Some of the common sizes are shown below: 
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number of bits in M~ 

4 
8 

10 
12 
16 

number of memory words 

16 
256 

1024 
4096 

65536 

The data to be written int.o the memory is held in the :MB (Memory Buffer) register. The number ·Of bits in this register is equal to the number of bits per word in the memory. Common word sizes are 12, 16, and 32 bits per word. Other sizes have been used such as 24, 36, 48, and 60. The smaller sizes are used for economy, the larger sizes yield arithmetic accuracy. 

Strictly speaking M is not an external register although it may be treated as such by the rest of the computer. The normal state of memory is to be reading. As long as this i.s true new data out will appear on the M lines a short time after a new address is loaded into MA. Further, data out will remain unchanged on the M lines as long as MA stays unchanged. Thus the only precaution the machine designer must exercise is to be sure that sufficient time has elapsed from a change in MA until M is used. 

d) Registers associated with the arithmetic unit. 

1. AC -- the accumulator. This register is used to hold one of the operands for the arithmetic unit and later to store the results from the arithmetic unit. There is always one of these registers; some machines have several. 

2. MQ the multiplier quotient register.t not used in 
. your lab 

Index registers. machine 3. 
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3) A set of data paths sufficient to make all the necessary data transfers must be chosen. Another name for a data path is a BUS. A bus is defined as a separate wire for each bit of a word to be transferred. The transfer will ordinarily be between a source regist~r and a destination register. 

One extreme is a separate bus for every possible transfer path. The rationale for this approach is to provide speed since in many instances s~multaneous data transfers can be made. Of course, this approach will be more complex since each bus will require a separate set of control gates. 

The other extreme is to have only one bus in the machine and route all transfers over it. Even though some advertising would lead one to believe this is a new concept, it is actually very old. The virtue of this approach 



is simplicity and economy. Unfortunately, it will always be slower. He will now go through this process for your laboratory computer: 

1. Command Set: 

Students are much more enthusiastic about a "real" computer than an original machine designed strictly for teaching purposes in spite of the fact that such a machine can illustrate all of the 
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principles of computer design at a considerable reduction in complexity. Given this fact, the search for a suitable command set narrows to one of simplicity and cost. A near optimum is the PDP 8-I. There are only eight different commands although one of these eight has many variations, so the effective number is about 20. This small set of commands reduces the com­plexity of the control logic in the CPU. Most small computers have word lengths of 16 bits. The PDP 8-I has a word length of 12 bits ivhich reduces the parts count. From a teaching standpoint this reduces not only the cost but also the number of wires the students must connect. 

A very brief description of the command set is given belo1v. A more complete description will be found in the PDP-8 Reference Manual. 

Al"ifD Forms the logical AND bit by bit between the AC and a word in 
memory. The result is left in the AC. 

TAD ·Forms the arithmetic sum of the AC and a word in memory. The 
result is left in the AC. 

ISZ Increment and skip if zero--increments a word in memory. If the 
result is 0, one command is skipped. If not 0, the next sequen­
tial command is executed. This command is used for loop control. 

DCA Store and clear accumulator. Stores the AC in a memory location. Clears the AC afterwards. 

JMP Jump. Breaks the sequential flow of a program by setting the PC 
to a new value. 

JMS Jump to a subroutine. Stores the return address in the first word of the subroutine and jumps to the second word of the subroutine. 

I0 Executes an input/output operation. 

Each of the above commands uses an address field in the instruction. The next and last command is fundamentally different. No memory access is required so the bits of the address field can be used for other things. Some of them are listed after the con®and. 

NMR Non-memory reference. Bits of the address field can be used to: 
Inc:::-ement the AC 
Complement the AC 
Clear the AC 
Clear the Link 
Complement the Link 
Shift right and left 
Skip on various conditions such as AC=O, Link 0, and minus AC. 



2. Choose registers. 

This command set requires the m~n~mum number of registers since only one accumulator is required. The registers are: 

AC, IR, PC, M, MA, MB. 

3. Choose the data path structure. 

We will choose the simplest possible structure to implement the com­puter, namely a single bus system. Our reasons are: 

a. A single bus system is easy to understand. This makes it 
better for a first introduction to computer architecture. 

b. Fewer wires are required _which makes it easier to build. 

c. A smaller amount of control logic is required. 

The schematic data path structure for one of the 12 bits is shown in figure LDl. 

The 8 input MUX serves to route any of the registers, including the switch register, to the A input of the ALU. The ALU can perform any of the 16 lbgic functions including F = A. Thus any register can be trans­ferred to any other by a three step process: 

a. Address the MUX for the desired source register. 

b. Set up the ALU control so that F =A. 

c. After F has stabilized, issue a load pulse to the destination register. Note that a D type flip-flop will present the old data on the Q output regardless of the data on the D input. This will 
continue until a new clock pulse is applied to the CLK terminal 
on the flip·-flop. Thus a register can be both a source and a 
destination without getting confused. 

Also note that two registers can not be loaded directly from the F bus. The switch register is composed of 12 switches on the front panel which can act as sources of data only. The only way to set them is manually. The other register is the M register which is the output of memory. The only v1ay new information can be written into memory is by first loading it i.nto MB and then issuing a write command to memory. 

72 

We see that this very simple structure is sufficient to transfer data from any source to any destination. A good portion of computer control consists of doing nothing more. Command execution hm.;ever, is more complex. Suppose we wish to do an ADD instruction where we must do the follm·Jing: 

AC plus M --t AC 

Note that AC is always connected to the B input of the ALU. If the MUX is addressed to M the contents of memory ~vill be presented to the A 



( 

input of the ALU. If we now set the control bits to make the ALU add A, B the sum will appear on F where it can be loaded back into the AC after it has stabilized. 

The simple structure shown above is in fact adequate to implement the entire computer. However, we have ignored how the computer will be guided through its various steps. The control process can be broken down into two major categories: 

1) Fetching an instruction from memory and preparing it for 
execution. 
2) Executing it. 
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An example of an operation that must be done every time a command is executed is PC(+)l ·-t PC. This can easily be done with our proposed architec­ture as follo1vs: 

a) Address the WJX to pass the PC (octal address = 0). A few nanoseconds later the contents of the PC register will be stable on the output lines of the MUX. 

b) Command the ALU to add 1 to its A input. If you look in the de fining tables for the ALU,(74181) you will find that: 

M=L S3=L S2=L Sl=L SO=L CIN=L 

will do the job. 

c) A few nanoseconds after these control signals are applied to the ALU, the output, PC(+)l becomes stable and can be loaded back into the PC. Since the PC is made from D type flip -flops, its output ( =- PC ) will ignore the input (PC(i)l) until a clock pulse is issued to the flip-flop. 

d) The idea is to generate the various control signals with gates, let the signals settle down and load stable ALU output signals back into a register. 

e) YOU CAN CONTROL A COMPUTER WITH THESE REGISTER TRANSFERS. 

A simple abbreviation for steps a-c is given below: 

MUX=PC ALU=A(+)l PC(load) or PC(L) 

Another common operation is to move the PC to the MA to read the next instruction from memory. Remember the PC points to the memory location containing the next instruction to be executed and tb.e JvfA is a special register that tells memory where its next access should be. Every time we load a new value into MA the contents of that memory location will be read out a short time later (the normal state of memory is to be always reading unless commanded to write). Now the PC must be passed through the ALU unchanged so it can be loaded into the MA. If you look at the data book for the ALU there is indeed such a command: 

S3=H S2=H Sl=H CIN=X(H or I.) 



In short: 

t1UX=PC ALU=A MA(L) 

In our computer after we have read the next instruction from memory we will want to load it into the Instruction Register (IR) so it can be saved for the duration of that command. Control signals will be generated from the (IR) to guide the CPU through to a successful completion of that stored command. The IR can be loaded as follows: 

HUX=M ALU=A IR(L) 

Again let us emphasize that a computer is nothing but a set of regis­ters which command sub-elements of the computer to do certain operations. 

The MA tells memory where to read or write 
The M gives the result of a memory read 
The HB stores data to be written into memory 
The PC stores the location of the next instruction 

H=mem(MA) 
mem(MA)=MB 

The IR stores the current instruction during its execution The AC is the accumulator 

74 

From the information stored in these registers we must generate control signals to the HUX, ALU, Register Load Signals, etc. to make the computer perform properly. By far the most important control signals are the ones listed in the last sentence. 

To get a solid foundation let us go through the first six instructions in detail. vle will assume that the fetch portion of the cycle has left the effective address in the HA and the effective operand in the HB. This is the entire purpose of the fetch cycle. The execute cycle can now be called without regard for any of the complexity or past history of processing during the fetch cycle. Not all computers treat the fetch cycle in such a uniform fashion but it is a procedure that any experienced programmer vJould consider very natural. All that we have done is split the execution of a single instruction into t>vo independent parts (co-routines), the fetch cycle, and the execute cycle. By making them independent we can tackle them independently also. 

1) AND 

2) TAD X 

Remember that X is a memory address and the instruction commands the computer to take the contents of that addi·ess (the operand) and form the bit by bit AND with the AC. The result is to beleft in the AC. 

He make the standard assumption that the fetch cycle has left the effective address in the HA. and the effective operand in the HB. Thus we form the bit by bit AND between MB and AC and put the result in the AC. 

The entire operation can be done in one clock cycle: 

MUX==HB ALU=AND AC(L) 

The comments on 1) apply here also: 

MUX=HB AC(L) 
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3) ISZ X This command does two things: 

a) Unconditionally increments the contents of memory location X. 
mem(X) = mem(X) (+) 1 
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b) If the result in memory location X=O then skip one instruction; otherwise execute the next sequential instruction. 

Note that this instruction must do a memory \vrite since a neN value must be put back in memory. This will require the loading of MB with the incremented value and the issuance of a write command to memory. 

After this is completed, we must test the result. If zero, the next instruction must be skipped. This can be done very simply by incrementing the PC in the ALU and loading the result back into the PC if mem(X) = 0. If mem(X) * 0 do not load the new address into the PC; by default the old value will be left in the PC. 

This instruction will take three clock cycles to complete. 

CLKO) MUX""MB ALU=A (+) 1 MB(L) Get the old effective operand, incre­
ment it, store it in MB for memory 
write. 

CLKl) Issue a write pulse to memory, wait unti 1 memory has completed the operation. 

CLK2) MUX""PC ALU""A (+) 1 Increment the PC 

I+) DCA X 

IF MB=O load the ALU output into the PC. 

This instruction stores the contents of the AC into memory location X. Note that we need only the effective address for this command. He do not care what was in mem(X) since the AC will overwrite it. 

CLKO) MUX=AC ALU=A MB(L) Move the AC into MB in prepaxation 
for writing. 

CLKl) Issue a write pulse, wait until done. 

5) JMP X Jump to location X. This is probably the simplest command since it only sets X into the PC. 

CLKO) f.fUX=H.A. AI..U=A PC(L) 

6) JMS X This comn1and is used to jump to a subroutine. The essence of a subroutine is the ability to return to the next location after the calling location. This return location is stored in location X. A standard jump is then made to location X (+) l. 

CLKO) MUX=PC ALU=A MB (L) Move the return address (PC) to the MB so it can be written into the firs~ word of the subroutine. Remember that address is in YJA from the fetch cycle. 



CLKl) Issue a write pulse and wait for completion. 

CLK2) MUX=JVJA AI.U=A (+) 1 PC(L) Set up the jump to the 
second word of the subroutine. 

The next step is to derive the control signals and their timings that will make the computer execute any one of these six commands. To do this 
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we organize this information into a table with clock times labeling the rows and command types labeling the columns. The clock times will be abbreviated; thus CP2 stands for Clock Pulse 2 (or equivalently clock time 2). 

AND TAD ISZ DCA JHP JHS 

HUX=JvlB JVIDX=JvlB HUX=.MB MUX=AC MUX=MA HUX=PC 

CPO ALU=Al\'D ALU=iWD ALU=A+l ALU=A ALU=A ALU=A 

AC(L) AC(L) HB(L) HB(L) PC (L) MB(L) 

CPl Hemory Hemory Hemory 
Write Write Write 

CP2 HUX=l)C HUX""l'1A 
ALU=A+l ALU==A+l 
PC(L) if JvlB=O PC (L) 

The information in this table can now be converted to boolean equations. Let us consider the HUX equations in detail: 

JV1UX == HB during: CPO (AND + TA.D + ISZ) 
MDX = AC during: CPO . DCA 
MU'.A -· MA during: CPO Jl'W + CP2 . JMS 
MUX ..• PC during: CPO . JHS + CP2 ISZ 

Remember that the various MUX inputs are selected by a three bit code. We will label this three bit code as B4 B2 Bl. The actual values for a given code are shown on fig • LDl . We see that: 

We can 
as follovJS: 

MUX ·- JvlB requires Bfl. B2 Bl :::: 001 
HUX = AC requires B4 B2 Bl :::; 011 
HUX MA. requires B4 B2 Bl 010 
HUX ·- PC requires Blr B2 Bl 000 

nOl-l derive boolean equations for each bit of the 

B4 = 0 
B2 == AC + Nf\ 
Bl = HB + AC :::: 

CPO • (DCA + JMP) + CP2 ~ JHS 
CPO • (AND + TAD + ISZ + DCA) 

select code 

It is no1v a simple matter to build gate circuits that will generate correct signals for B4, B2, Bl >vhich in turn will properly control the HUX fer th(" execution of the above commands. Of course, \ve \-Jill also need a source for CPO, 1, 2, but this is a simple problem which we will consider later. 
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A similar analysis will give the ALU control signals as shown below: 

ALU =AND 
ALU =ADD 
ALU =A + 1 
ALU ==A 

during CPO AND 
during CPO • TAD 
during CPO • ISZ + CP2 • (ISZ + JMS) 
during CPO (DCA + JMP + JMS) 
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By reference to the data sheets for the ALU (74181) we find the following control codes for the various operations: 

M S3 82 Sl SO CIN 
ALU =AND 1 1 0 1 1 X 
ALU =ADD 0 1 0 0 1 0 
ALU =A + 1 0 0 0 0 0 1 
ALU =A 1 1 1 1 1 X 

The polarity conventions are: 

M = 1 is H S3 •· so == 1 is H CIN = 1 is L 

Boolean equations for the six ALU control signals can now be 

H = (AND + A) tl:L..J.O 
83 =(AND +~A) 

· 82 =A 
Sl = (AND + 
SO == (AND + +A) 

= 

= 

CPO • (AND + DCA + JMP + JMS) 
H + ADD = H + CPO • TAD 
CPO • (DCA + JMP + JMS) 
H 
S3 

CIN = S3 (Since we can assign X to be either 0 or 1) 

derived. 

Again we see that the resulting equations are very simple and that the 
process of deriving them is also simple. All that is required is the com­
plete table of operations required at each clock pulse. This table is sho1v11 in fig. LD2 and LD3. Note that six new operations are included in the blue­
print that do not correspond to the command set of the PDP 8-I. These are 
the manual load cormnands which load the switch register into the corresponding register. These are extra commands added for the convenience of the program­
mer. They require so little additional hardware that they are well \vorth it. 

The reader should go through this chart and derive the equations from it 
to verify the logic equations for the HUX> ALU, and Load signals shmvn in 
figure LD6. 

Let us return to the clock pulses, As you can see from the logic equa­
tions we must have a signal, for example CPl, which is true _only during time 
slot 1. Similar signals must be available to tell you when you are in any 
given time slot. 

Such signals can be supplied by a 9ecoder driven from a counter. The 
particular counter that we use is the 7LJ163; at this time you should review 
it in the TI manual. From the "black box" standpoint it has four outputs 
Qn, Qc, QB, QA, and a clock input. Suppose the initj_al state of the outputs are all L, i.e., (0000). The arrival of a clock edge (negative to positive 
transition) will cause the device to COUNT or advance to the next state with QA. high and Gn - QB low, i.e., 0001. The arrival of another clock pulse 
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will advance the counter to state 2, i.e., 0010. Each new clock pulse will 
move the counter into the next state. In each case there is a direct 
correlation with the sequence of binary numbers from 0-15. The 16th clock 
pulse will return the counter to 0000 where it is ready to start the 
counting process again. 

Now all we need is some device to tell us what state the counter is in. 
That IC is of course a decoder. Remember a decoder accepts a binary number 
and activates a unique terminal corresponding to that input. 

~ r--_Q_. _Q___Q_.Q _ _Q__Q_I I :: t 0 I 2. 3 tf 5 0 7 
I Q" I --------

1 r• I -------L_ '-I'A i---
1 I 

Thus if the~ter is cleared, i.e., 0000, then only output 0 of~ 
decoder will be L. If the counter is in state 0011 then only output 3 ~~e ~ 
the decoder will be L. Since we need only eight different time slots to ). 
control the execute cycle we use only the three low order bits of the counter 
to drive· the decoder. The decoder actually used (7442) has 10 output 
terminals (0-9) and will accept 4 bit binary inputs. 0000 through 1001 
activate just one output terminal. Inputs 1010 through 1111 are illegal 
inputs and turn off (inhibit) all outputs. Since \ve are interested in 
decoding only eight states we may use the fourth input (D) as in inhibit. 
If D = 0 we are considering inputs 0000 = 0111 and everything behaves 
normally. If D = 1 \ve are considering inputs 1000 = 1111. If we are using 
only outputs 0 - 7 in our circuits they are switched off (H) whenever D = 1. 
Thus D can be used as an inhibit signal for outputs 0-7. This is useful 
since we want to feed signals CPO - CP7 to gates only during the execute 
cycle. CPO - CP7 must be turned off during the fetch cycle to keep the 
machine from getting confused. 

Fig· LD9 shows the actual circuitry for generating CPO - CP7. Bl7 is 
the decoder; note that inverters are used on the outputs so that CPO - CP7 
are available in both high and low polarities. The enable line D, pin 12, 
is driven from the EXEC flip-flop which turns on only during the execute 
cycle (EXEC is turned· Ori when the FETCH cycle·· is ·exi.ted). Thus the decoder 
is enabled during the execute cycle only. 

Bl5 is the execute counter. Only the three low order bits of the 
counter output (Qc, QB, QA) drive the decoder. When the EXEC flip-flop is 
reset a solid clear is applied to Bl5 continuously holding it in the 0000 
state (the Q" output of EXEC is simultaneously disabling the decoder Bl7). 
As the fetch cycle is exited the EXEC flip-flop becomes set (Q = H) which 
then enables the counter B15 to count through the eight states of the execute 
cycle and also enables the CPO - CP7 decoder so these signals become available 
to the gates which are generating the HUX, ALU, and Load control signals. 
At the end of CP7 the FETCH flip-flop is set (GTF, Go To Fetch, pin 13 of 
B47) and the EXEC flip-flop simultaneously reset (pin 3, B46). 
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Thus the execute cycle ah1ays starts at CPO and runs through CP7. This is stupid since most instructions do not require all eight time 
slots for their execution and the idle time is simply wasted. It is a small exercise for the reader to generate a ne\v GTF signal which will terminate the execute cycle as soon as possible. The simple design was chosen to keep the parts count to an absolute minimum. 

At this point let us review what you should have learned from this chapter: 

1) Buss structure of the lab kit; 
2) How that structure can be used to move data within the machine; 3) How the machine can be controlled to accomplish the data moves 
of 4J:2; 
4) How boolean equations can be derived to accomplish the control 
of 1J:3; 
5) An introduction to the concept of a time sequence of states used to implement the boolean equations of #4. This topic is so impor­tant that we will devote the next chapter to it. 
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(11) HARDWARE FLOW CHARTS 

The essence of digital design is the construction of logic circuits 
that will implement a flow chart- The reader is most likely familiar with 
writing a program to implement a flow chart. It sometimes is foreign for 
a person with such a background to think of hardware doing the same thing. 
Both techniques should be in the tool kit of any computer architect since 
each technique has unique advantages. 

A) Hard~.vare flow chart implementation. 
1) Advantages 

a) Speed -- properly designed hardware will always execute a 
flow chart faster than a programmed computer. 
b) Sometimes it is the only way a flow chart can be implemented. 
For example, although a computer can be programmed to execute 
the flow chart, how can the internal flow chart of the computer 
itself be implemented? Clearly this must be done ~.vith hardware, 
c) Non-Volatility -- Since the hardware is made up of copper 
wires, gates, etc., it does not disappear when the power is 
turned off. As soon as power is reapplied the hardware is 
ready to go. If the implementation is by means of a stored 
program it is sometimes necessary to reload the program after 
a power outage. 

2) Disadvantages 
a) Maintenance -- There are many more programmers in the world 
than logic designers. If a bug develops it may be easier to 
find and repair in software. 
b) Inflexibility -- Hardware is difficult to change. It 
usually means ripping out wires, changing gate types, etc. 
A program change by contrast is quite easy. 

B) Flowcharts implemented by programs (software) 
1) Advantages 

a) Ease of implementation -- If the flowchart is at all complex, 
and especially if it involves numerical computation, a software 
implementation will usually be much cheaper. 
b) Ease of change -- Often the flow chart one is implementing 
will change during the course of a project, usually in an 
unforeseen way. Such changes can be m1,1ch more easily handled 
in software •. 
c) Cost -- For one or two copies of a device it can be. much 
cheaper to buy a micro or minicomputer and program the solution. 
A hardware solution does not pay off until many copies (often 
hundreds) have to be produced. 

2) Disadvantages 
a) Interfacing -- We have been very glib when we talk about 
implementing a flow chart in software since we are considering 
problems where a physical device must be controlled. An example 
would be a minicomputer which is controlling a telescope. 
Somehow or other the telescope must be electrically connected 
(interfaced) to the comp\.tter. This is always a hardware interface 
which may be more or less difficult. 
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b) Sometimes the flowchart you are trying to implement may 
involve an algorithmic process that can be done by a program 
but too slowly to meet external constraints. An example 
might be conversion from polar to rectangular coordinates on 
a rotating radar antenna. Depending on the speed of rotation 
and conversion accuracy a computer program simply may not be 
able to keep up. In such a case a hardware solution may be 
unavoidable. 
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The point of the preceding discussion is that both methods are useful 
for solving real problems. Any practicing engineer or computer scientist 
must be open-minded enough to choose the optimum solution (which may be a 
combination). 

Naturally since we are building a computer \-Je will restrict our dis­
cussion to hardware implementations of flowcharts. For obvious reasons we 
are considering only the simplest systems, which happen to be synchronous 
sequencers. Synchronous means that the transition from one point to 
another on the flow chart happens only on the tick of a sys tern wide clock. 
The basic reason for this simplicity is that every decision can be made 
at a predictable time. Further, these times can be chosen so all transient 

· behavior in the system has died down and decisions are based on stable 
signals. The resulting advantages are so strong that the vast majority of 
digital systems designed are synchronous. Nonetheless, asynchronous 
systems are important for the professional desigJ?.er and should be studied 
in some of the reference texts for those wishing to go deeper into the 
subject. 

The symbols we use to construct a flow chart are shown below: 

STATE 

This symbol represents a unit of time. Time can be visualized as 
starting at the top of the rectangle, progressing for one clock cycle to 
the bottom of the rectangle which coincides with a clock tick. At that 
time a jump to the top of a new box is made. Such a box is called a STATE. 

Each box on a flow chart is unique by virtue of its position and must 
therefore have a unique identifier. This identifier is made ~p of boolean ·· 
variables, usually outputs of flip-flops. Thus a state can be identified 
either by the flip-flop outputs or symbolically. By convention we write 
a symbolic name for a state to the left of the box, the boolean variables 
on the upper right. 

we-have already discussed the flow chart for the execute cycle. Let 
us show it graphically: 



CPO 

CPl 

CP2 

CP3 

CP4 

CPS 

CP6 

CP7 
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We have chosen state names CPO through 
CP7 but there is nothing sacred about 
choosing them to correspond to the 
state variables 000 through 111. Other 
state names such as A - H could have 
been chosen. Clock Pulse 0 - 7 vlas 
chosen because it is descriptive. The 
state is identified by three flip flop 
outputs, Qc, Qn, QA, from the 74163 
counter. 

The above flowchart is useful but limited since it has· no provlslons for a conditional branch. The symbol for a test is shown below: 

or 

The quantity to be tested is written inside the box and is a voltage. 
Examples are: 



Since the quantity to be tested is a voltage which can assume only two 
values (H or L) the ordinary conditional branch leads to only two other 
states. 

The actual flow chart for the execute cycle in fact has a cond:Ltional 
branch condition built in to handle the case of a memory write cycle. 
Memory timings are independent of the main system clock; therefore the 
memory must have a t.vay of telling the computer that it has finished a 
write cycle and the computer must have a way to wait until it gets this 
signal from memory. If you examine the execute table you will see that 
ISZ, DCA, JMS, LDM, and DEP initiate a write cycle on CPl. After the 
write cycle is initiated, memory will independently take care of its own 
operation. During this time t.ve are free to do other CPU operations 
provided we don 1 t disturb MA or MB. The execute table discloses that HA 
and l'1B are not loaded by any command during CPl, CP2, or CP3. He can 
therefore do these CPU operations in parallel with memory operations and 
save time. Therefore, we do not test CYCOMP until CP3. 

when: 

when: 

CYCOHP is the signal that memory 
returns to the computer 

CYCOHP 0; the memory is still busy 

CYCOHP 1; the memory has completed 
its previgus operation. 

The branch test is not made until the clock ticks. The designer must make 
sure that CYCOHP is stable at the clock tick time or it is possible to 
confuse the branch test. The test for CYCOHP is handled in a very clever 
\vay by a special property of the 74163. 

83 

It is now time to consider the 163 in full detail, The student is 
urged to examine a manufacturers data book in addition to this description: 

____ ,--~,------------------------q-~1--
----~ c Q '- --·-·--
------1 B q 8 +-----
----- A Ci> A ---

LOAD 

('_./_ 1\ 



There are many nice properties of this IC; one of them is controlled 
by the LOAD terminal. If LOAD = L the IC is disabled as a counter and 
reconfigured as four ordinary D flip flops whose inputs are A - D and 
outputs are Q~ - QD• If LOAD = H and CLEAR = H the IC functions as a 4 
bit binary counter provided both ENABLE P and ENABLE T are H. If either 
goes L the counter will ignore CLK pulses and stay in its present state. 
This is used to implemei1t the CYCOMP test during execute, CP3. 
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It is possible to enter execute with a CYCOMP still pending (CYCOMP=O). 
The purpose of the MIC · CP3h gate is to disable the CYCOHP condi­
tional branch test during the execution of a microinstruction. The reason 
for this is subtle. If the system clock is much faster then CYCOMP many 
branches back to state 3 will take place before CYCOHP = 1. If you look 
at OPGl during CP3 you see that AC ~vill be incremented at the beginning 
of CP3 and the new result loaded back into the AC at the end of CP3. Thus 
it is possible to increment AC many times while waiting for CYCOMP. This 
is prevented by gate A7 (pin 10, fig, LD9). All other commands will have 
a conditional branch on CYCOHP at the end of CP3. CYCOHP will normally 
be 1 unless the memory has been issued a write pulse so those instructions 
that do not issue a write during CPl will always take the branch to CPL1 .• 
Those that do issue a write will branch back to the CP3 state until CYCOMP = 1 and then go to state CP4. 

The previous technique will always loop back to the parent state on 
the failure of the conditional branch test since the counter will be held 
i.n its old state. A slightly more complex flmv chart will be required to 
describe the fetch sequence since we will need to branch to any state on 
the 0 branch of the conditional test. 

To describe this flow chart we need to introduce the concept of a 
conditional output. Its symbol is: 

(- --
'------ _____ ) 

If a state i.s to output a value regardless of any test conditions that 
value should be written inside the state box: 

indicates X will = 1 during state PDQ 
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Sometimes however, we will want signals to be true only during a given 
state AND a given test variable equal 1 (or D). We show that in the 
following fashion: 

X will be true for one clock time during state PDQ 
A will be true for one clock time during state PDQ 

only if y == 0 
z will be true for one clock time during state PDQ 

£!!1.Y. ifY = 1 

The circuit we shall describe has the following basic structure 
for each state: . 

t r c·----J 
/~ A<.~-----·------------

' -c- /. ('') '- c:> { ·\ ___ __,~ •·;-/' r-r ) ST,,T~ <TE5·7-t ,->--·7\\ // , .. _) •/C ~ 
~ / '-... ........ ---- .................. ---·· 

I I 
F; c _____ _\C _____ _) 

-------,--
1 

__ _,''--- /-1--/ 

S !fiFE t N [_--,.-~~-=] 
y 

Here we have labeled the conditional outputs as Fi (Fetch i) and Ai 
(Alternate i). There is nothing sacred about these names and any name 
that has meaning with respect to the flow chart being implemented may be 
used by the designer. Note that Fi and Ai are not states; they a1·e condi­
tional outputs associated with state i. 

We will now discuss the fetch flow chart state by state: 

STATE 0 
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AO: is the external interrupt sent to the CPU by peripheral 

devic.es. The CPU has an internal flip flop that c.an be set by a spec.ial command, ION; or reset by another special command, IOF. The CPU \l!ill 
ignore external interrupts when IE = 0 and respond when IE is 1. Response 
to an interrupt is the exec.ution of a JMS to location 0. At this point reread the description of the JMS command. The net effect \vill be to 
store the updated PC in location 0 followed by a JMP to location 1. The exec.ute cyc.le expects to find the effective address (0) in the MA. A 
Ji"IS (octal 4) must replace the old Opcode. This is clone by the triple 
two input multiplexors (Bl3) shown on figure LDlO. Conditional output AO 
resets the JK flip flop BLJ-7, the Q output goes L ivhich is the proper 
polarity to switch the MUX inputs to (Vee, gnd, gnd) = (100) = octal 4 to the instruction decoder Bl4. CP7h sets the flip flop at the end of the 
execute cycle so that the l'fUX Hill pass the opcode (IRO, IRl, IR2) 
normally for folloHing instructions. Another function of AO is to turn 
off the interrupt system by resetting the interrupt enable flip flop. 
The reason for this is the interrupt subroutine must be free to process the interrupt Hithout being subject to interrupt. 

FO: The absence of an interrupt is by far the most corr@on exit taken 
from state 0. The next instruction to be executed must·be-read from 
memory; the PC points to that memory location. Therefore, the MA is 
loaded from the PC and memory read cycle is started by issuing a read (R) pulse. 

STATE 1 

ST/1 TE 
2 

Al: Our standard hardware actually prov1.aes anAl output; but since it is not needed the pin on the generating decoder remains unconnected 
and the A1 conditional output is not shoHn on the flew chart. 

Fl: After CYCOHP = 1 all of the signals shown in conditional output 
Fl will beccrne active. These signals route the new instruction just read 
from memory to the instruction register. 
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STATE 2 

F2 

S:TATE 

3 

A2: Ignored. 

F2: We wish to always increment the PC so we do a conditional 
branch on an always true variable to in effect generate an unconditional 
branch. The PC now points to the next instruction so the next time we 
reach FO, PC will point to the proper instruction. 

STATE 3 

STATE 3 is used for processing the special instruction ION. This 
special co1nmand is used to turn the interrupt system (IE flip flop) on. 
In addition it is set up so the next instruction will always be executed 
even if an interrupt is pending. The reason for this is the interrupt 
subroutine must disarm the interrupt system so it can process an interrupt 
without itself responding to follmving interrupts. The next to last 
instruction of the interrupt subroutine must be an ION to rearm the 
interrupt system. The last instruction of the interrupt routine must be 
a return .JMP to the main program. This return jump must always pe 
executed even if a new interrupt is pending . . ,r· J { ~ • :..r;,k ., . c"""t{'·~, . -~,' &:( 
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A3: Must rearm the interrupt system so it sets 1 ~IE (A95 fig. LD21). 
There are many different kinds of flip-flops that could be used for IE. 
We have chosen one of the more complex kinds, a gated D flip flop. This 

I 

\ 
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special type has so many nice properties that it is becoming available 
as an IC. In view of this we felt it Has worthwhile for the student to 
construct one from individual canponents (A97, A9S). As long as the 
INTLD signal is false, data from the flip- flop will be reloaded on the 
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next clock. If INTLD goes true the old flip ··flop output is blocked from 
the D input and a new signal A3 is loaded into IE. The beautiful thing 
about this circuit is that the clock can be fed to the D flip-flop always 
without destroying the old contents of the FF. Only when the load signal 
is applied does the FF accept a new value. The conditions for loading are: 

INTLD = AO + A3 + CPO • IOF 

Remember that state AO must turn off the IE FF. During AO, A3 \vill 
be H which will apply an L to D (A9S, pin 1.2). Thus AO \vill set 0 -+ IE. 
The same is true for the special command IOF which disarms the interrupt 
system during CPO. During A3 the input to pin S, A97 will be L, input to 
D (A9S, pin 12) will be H. Thus A3 will set 1 -+ IE. 

Note from the gates at the top of figure 1S that instructions 6001, 
6003, 600S, 6007 (octal) will all be decoded as an ION instruction. 

A3: As shown above 1-+ IE. Also since the next instruction must 
always be executed independent of a pending interrupt we must branch to 
state 1 thereby ignoring state 0 (which tests interrupt). However, we 
must duplicate the work accomplished in FO. 

F3: Assume we have some instruction that requires an operand such 
as TAD X. We must make a memory reference to get the contents of location 
X. The PDP 8 can address memory only within .. J:>AGES, of _128 locations. Th0; 
reason for this is that only 7 bits of t~e ornmancK~{IPS)j IRll) are inter­preted as a memory address. Another bit (IRS)'1is us.ecl;·:fo select one of 
two pages for the. memory access. If IRS = tr1ts IRS - 11 are interpreted 
as a reference to page 0. If IRS = 1 the reference is to the page that 
contains the instruction being executed. Since memory has 4096 (zl2) \vords 
we must generate a 12 bit memory address which requires that we concatenate 
an additional S bits to the 7 from the instruction. To access the current 
page these S bits must be the S most significant bits of the PC. We do 
this by ANDing IRS with PC0-4. 

IRS PCO = 0 if IRS - 0 
IRS • PCl 

PCO if IRS = 1 

IRS PC4 0 if IRS = 0 : PC4 if IRS = 1 

He call this composite address the effective address EA. 

EA (0-4) = IRS · (PC0-4) 
EA (S-1.1) = IR(5-ll) 

These gates are shown on fig. LD18, A48, 49, 50. The total effect of F3 
is to load MA with the EA in preparation for a memory read to retrieve the 
effective operand. 
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There is a fundamental difference bet1.veen an instruction like JMP X and 
TAD X: 

JMP X says jump to loc?-tion X we do not need an effective 
operand, the effective address is sufficient and 
since this was loaded into NA in F3 we can exit 
directly to the execute cycle. 

TAD X hov1ever, requires the contents of X so we must do 
an additional memory read to get the effective 
operand which must then be stored in MB before the 
execute cycle is entered. 

State 4 is the place where we make the decision that an effective operand 
is not needed and therefore an immediate exit to the execute cycle can 
be made. There are two instructions that can be immediately decoded in 
this class: 

IOT X Initiate an input, output operation to peripheral 
(opcode=6) device X. In the IOT instruction X address 

a device not memory. 

MIC X MIC is a special class of instructions called the 
microcoded instructions. In this case X does not 
refer to memory but instead tells what kind of 
microcoded operation to carry out. An example would 
be lAC (Increment ACcumulator). None of the MIC 
operations require a memory reference. Note that 
CYCOMP = 0 because of :MA. (L) in F3. 

The DCA, JMP, and JMS instructions are slightly more complicated than 
shown above and require a discussion of INDIRECTION. In an instruction 
like JMP X, X will be the jump address if IR3 = 0. However, if IR3 = 1 
then X is the address of the jump address. Such.instructions are called 
indirect. 

Thus if: 
IR3 0 
IR3 = 1 

X is a direct address, 
X is an indirect address. 

89 



90 

Indirect addresses require one more read cycle to get the address which 
can then be treated in the normal fashion. Thus we can call the execute 
cycle only if the jumps are direct jumps. The direct DCA instruction is 
in the same category. Thus the ~ondition for an early exit to the execute 
cycle is IOT + MIC + (JHS + JHP + DCA) · IR3 = 1. 

STATE 5 0/0/ 

~ 
FS"c~ -,________;-) (-1(/)( ;:;- /'-1 

ALU= -'I 
~B(L) ---r--

State 5 will be entered only for commands that require an effective operand 
(such a.s TAD X) or indirect jumps or DCA. In an indirect JHP *X (indicated 
by the 'f< before the X) we calculated the address in step F3 but this is 
only the address of the address so we must read memory again to get the 
final address which we now call the effective address. 

i.e.' JMP X 
JHP *X 
TAD X 

jump to loc [X] 
jump to loc [mem(X)] 
operand = contents of [mem(X)] 

Since a memory access will be required in any case, a read pulse is issued 
and a test on CYCOHP is made. After the memory is stable the result is 
transferred to MB on the assumption that it may be the effective operand 
of an instruction like TAD X. 

STATE 6 

The function 
like~ X. 
entered. If 

'1>L) 

57-/4 T.l: 
7 

of state 6 is to test for the presence of a direct instruction 
If the instruction is of that type the execute cycle can be 
it is an indirect instruction further processing is required. 
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STATE 7 

-·-·-) 

If we get to state 7 we know that we have an indirect instruction. These 
instructions may use the auto index registers. They a.re eight words of 
memory, address 0010 = 0017 (octal). If one of these locations is accessed 
by an indirect instruction its contents a.re incremented befo~ it is used 
as an address. This is a very convenient way for instructions to auto­
matically index through memory. For example suppose we wish to clear a 
table 1538 words long whose starting location is 32ls. 

octal octal 
location code 

110 7200 

111 1130 
112 3012 
113 1131 
lll~ 3132 
115 3412 
116 2132 
117 5115 

118 
130 320 
131 7625 

symbolic 
inst 

operand 
address 

CLA 

TAD 130 
DCA 12 
TAD 131 
DCA 132 
DCA *12 
ISZ 132 
JMP 115 

HLT 
data location 
data location 

The first three instructions 110 
address in auto index register 12. 

comments 

move the starting address - 1 (320) 
to auto index register 12 
mem (130) = 320 
mem (12) = 320 
mem (131) = - 153 
mem (132) = - 153 
clear table 

repeat if less than 153 locations 
cleared 
153 lacs cleared 
must contain (st adt-1) = 320 
must contain - 153 

- 1.12 set up the table starting 

Instructions 113 - 1.14 set up the loop count (table length) in 
location 132 for later use by the ISZ instruction. The gener~l rule for 
a loop that repeats N times is to store the 2's complement of Nina 
memory location later used with ISZ instruction. 

The actual loop is in locations 115 - 117. We will discuss the DCA *12 
instruction in detail. DCA does E.£:!:_ clear memory location 12. Since it 
is an indirect instruction location 12 contains the addres§_ of the final 
location to be accessed by the instruction. In addition since it is an 
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auto index location (0010 - 0017) that is referenced indirectly it is 
incremented before it is used. To start with it contains 320. The first 
time DCA ''•12 is executed the contents of memory location 12 is incremented 
to 321 and the 321 is used as the effective address. Therefore, location 
321 is cleared. The next time a DCA '>'•12 is executed the 321 will be 
incremented and then used as an address; thus location 322 will be cleared. 
The nice thing about this technique is the incrementation takes place 
automatica1ly since the following two conditions were met: 

1) The memory reference was indirect; 
2) The memory reference was to an auto index register (0010 = 0017) 

F7: Increments this address and puts the new value into the HB in 
preparation for writing it back into memory. A memory \vrite pulse is 
issued. 

'l? A.?;~~~ 
A7: Is the step taken if the indirect memory reference is to any 

memory location other than an auto index register. 

STATE 8 

The function of state 8 is to wait until memory is stable at \vhich 
time the auto index register will have the incremented address written 
back into it. The incremented address (the effective address) will still 
reside in HB so it can be transferred to MA as required by the execute 
cycle. 

STATE 9 
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Again we have to recognize the fundamental difference between JMP >'<X instruction and a memory reference instruction like AND "l<X, In state 9 
we have the effective address which is all we need to execute a jump 
instruction which we can do in A9. If it is a memory reference instruc­
tion we must do one final read to get the effective operand. This is 
done in F9. 

STATE 10 

I 

FlO: The sole function of this state is to load the effective 
operand into the MB and call the execute cycle. 

Since the concepts of effective address and effective operand are 
so important,we will review them again. 

EFFECTIVE ADDRESS: 

The final address presented to the execute cycle after all indirec­tion and indexing have been performed. 

EFFECTIVE OPERAND: 

The contents of the memory location pointed to by the effective 
address. 

The fetch sequencer is shown on fig. LDll. The state flip-flops are the Qn - QA outputs of the 74163 counter, Bl2. The counter is held to 
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0 by the fetch flip-flop, B47, except when this flip-flop is set (i.e., 
during FETCH cycle), The setting of B47 removes the clear and also enableo the ET input of the counter. B47 also appears on figure 3 for clarity. 

The 16 wide MUX (C3) senses the present state of counter and selects 
a test condition for each state. If the test voltage is H the correspon­
ding Fi output on decoder (Cl) becomes active. This also enables the EP 
input to the counter so it can increment to state i + 1 on the next clock 
tick. If test voltage (i) is 1, output Ai (C2) becomes active and at the 
same time the count mode is inhibited holding the counter in its present 
state. A3 and A7 involve jumps to nev7 address; therefore ~ve must calculate the jump address and present it to the D inputs of the 74163. A load 
signal is simultaneously generated by the OR gate (A93). 
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Both the execute and fetch sequencers use a binary coding to represent 
states. An_other scheme that is often used is to dedicate one flip-flop· to 
each state. Such a design is called a ONE HOT coding since only one flip­
flop should be set at any time. Such systems are very easy to design but 
will require more hardware for a machine with many states. We have two 
examples in the lab computer. 

1) RUN state: The run/halt state may be represented by a single flip­
flop. Run corresponds to the RUN FF set and halt to RUN FF reset. 
This flip-flop is shown on fig. LD9, .B46, pin 9. The RUN FF must be 
set to permit the completion of execution (CP7) to call the fetch 
cycle. 

GTF = RUN • CP7 

Go To Fetch = RUN • (end of ex cycle) 

Thus the RUN FF can be reset any time during the execute cycle and 
that cycle will finish but the next fetch cycle will not start. The 
conditions for stopping the computer after the current instruction: 
are: 

STOP switch is manually depressed. 
SING INST switch is activated. 
HALT command (7402) is executed. 

The·condition for setting RUN is a signal derived from the CONTinue 
switch on the control panel. CONT Pulse will be true for only one 
clock cycle \vhen the continue switch is depressed. At the same 

( time it is necessary to set the FETCH FF to start executing the 
' first instruction. 

2) FETCH and EXECUTE flip flops. This is another example of a 0~~ HOT 
coding since the machine can be in fetch or execute but not both. 
If you look at the fetch flow chart the conditions for starting an 
execute cycle are: 

GTE (Go To Execute) = AO + A4 + A6 + A9 + FlO 

This is shown in fig. LD9, AlO, pin 8. GTE simultaneously sets the 
EXEC FF (B46, pin 2) and resets the FETCH FF (B47, pin 14). Setting 
EXEC enables both the EXEC counter (B15, pin 1) and the CP decoder 
(Bl7, pin 12). Signals CPO - CP7 are now generated in sequence to 
carry the machine through the execute cycle. CP7 will reset the 
EXEC FF (B46, pin 3) and set the FETCH FF if RUN = 1; GTF (A54, pin 11). 



(12) DERIVATION OF FINAL LOGIC EQUATIONS 

MUX EQUATIONS 

N01-1 that the complete flow charts for both fetch and execute have 
been explained we can derive the equations for control signals in final 
form. We do this by locating all occurrences of a given signal on both 
fl01-1 charts. For exa~p~e MUX =PC occurs in the following places: q·f ,, 

/'::J ' ' 
AO~ FO, F2, A3, JMS•CPO, OPG2·CPO, ISZ·CP2 

Therefore, the final equation for MUX PC is: 

MUXPC = AO + FO + F2 + A3 + (JMS + OPG2) ·CPO + ISZ ·CP2 

Verify each of the following equations: 

MUXM = Fl + FS + FlO 
MUXEA F3 
MUXHB F7 + F8 + (AND + TAD + ISZ) • CPO 
:t-fUX:NA JHP•CPO + JMS ·CP2 + (DEP + EX) • CP6 
MUXAC DCA·CPO + OPGl·(CP2 + CP3) 
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1-fUXSR = (LDMfl + LDM + IDHB + LDPC + LDIR + LDAC + DE P) • CPO + OPG2 • CP2 '---------·------------. .,/----------- .. --- ....... ----·--·-----
MANSW • EX • CPO + OPG2 • CP2 

The HUX must in turn be selected by sending it the proper 3 bit code 
B4-, B2, Bl. By referring to fig. LDl the HUX assignments are: 

input selected B4 B2 Bl 
AC 0 1 1 
MA 0 1 0 
M 1 1 0 
MB 0 0 1 
PC 0 0 0 
SR 1 0 1 
EA 1 1 1 

The equations for B4, B2, Bl can now be written by inspection. 

B4 MUXM ~- MUXSR +· MUXEA 
B2 r·illXAC + HUXI':k-\ + MUXN + MUXEA 
Bl - MIJY.AC + MUYJviB + MUXSR + MUXEA 

The logic diagram fer these equations is sho1-1n in fig. LD12. You may 
wonder why B4 is driven by t"\vO identical gates. The reason for this is 
that one gate output can only drive 10 gate inputs. But there are 12 MUX's 
that must be identically selected. By paralleling two gates we can drive 
20 inputs. We could have generated the signal with one gate and then 
amplified it with a non-inverting buffer to get the additional po>ver to 
drive 12 inputs. Hm-;ever, this would have added one more stage of delay 
and the chain is already long (5 levels). 
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ALU EQUATIONS 

These equations are derived in a similar fashion to the MUX equations. Every occurrence of a given condition is collected together: 

ALUA == FO + Fl + A3 + F3 + FS + F8 + FlO + (DCA + JMS + JMP + MANSW · EX) . cro 
ALVA + l == AO + F2 + F7 + (OPG2 + ISZ) 

·CP3 + (DEP +EX) • CP6 
CPO + (ISZ + JMS) · CP2 + OPGl 

ALUAND =AND 
ALUADD == TAD 
ALUNA OPGl 
ALUOR = OPG2 

' CPO 
CPO 
CP2 

• CP2 

The control bits to achieve these functions are listed below; the con-
ventions are: 

M == 1,H S3 • • SO == l ,H CIN = 1,1 

M 83 

ALUA 0 0 
ALUA + 1 0 0 
ALUAND 1 1 
ALUADD 0 1 
ALUNA 1 0 
ALUOR 1 1 

SO == ALUAND + ALUADD 
Sl == S2 + ALUANJ) 
S2 == ALUOR 
S3 == SO + Sl 
M = Sl + ALUNA 
CIN == ALUA + 1 

S2 

0 
0 
0 
0 
0 
1 

Sl 

0 
0 
1 
0 
0 
1 

so CIN 

0 0 
0 1 
1 X X can be 
1 0 a 1 or a 
0 X 
0 X 

= (AND +TAD) · CPO 
S2 +AND · CPO 

- OPG2 • CP2 
SO + Sl 

= Sl + OPGl • CP2 
= ALUA + 1 

These equations are implemented in fig. LD13. 

LOAD EQUATIONS 

A summary of machine action is: 

1) MUX selects a source register, 
2) ALU operates on the output of the MUX, 

either 
0 

3) A destination register must be loaded >vith the output of the ALU. 

The regis tArs are made from 71+174 IC 's which are hex D flip- flops 
with a common clock line. vJhenever the clock line sees a positive going 
edge it loads the D inputs into the flip flops and stores the result until 
the next clock. Since these registers must hold data over many machine 
cycles we cannot feed the system clock to the register clock line. Instead 
we must feed a clock to a register only when we want to load it with the 
output of the ALU. (Remember that the ALU output is bussed to all register 
inputs). These special register clock signals are called register LOAD 
signals. 
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The design procedure for the load signals is a simple listing of the 
states and conditions that cause a register to be loaded: 

MA(L) = FO + A3 + F3 + F8 + LDNA 'CPO + (DEP +EX) ' CP6 
HB (L) = FS + F7 + FlO + (ISZ + DCA + JNS + LDH + LDMB + DEP) 'CPO 
IR(L) = Fl + LDIR •CPO 
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AC(L) =(AND +TAD +LDAC)·CPO +OPGl'CP2'IR6 +OPG2·CP2·IR9 +OPGl·CP3•IRll 
PC(L) = AO + F2 + (JHP + OPG2·T + LDPC)•CPO + (ISZ•MB = 0 + JMS) • CP2 
'L= IR8$ (IRS·Ac ·· + IR6·AC = 0 + ;I:R7·L = 1) .(.J.C• ,, .'1,_;, ·,· .. t;~t~,.. ~:·";~:!. , · "' ~! ;.z . 0 ,. t 

These equations are shown on fig. LD14 and LD15. You will notice that a 
flip-flop is interposed between the gate that generates the load and its 
final destination at the corresponding register clock. 

This special circuit is worth discussing in more detail. We need to 
present a single positive going edge to the clock input of a register to 
load it. The immediate thought is simply gate the clock to the register. 
GATING THE SYSTEM CLOCK IS NOT GOOD PFACTICE! To see this consider the 
timing diagrams: 

--, -. I I' Il ,____, 'l LJ L_J L_ -- l ___ j ~ 

GATE 

SYS 
CLK 

_ ___.IL_. _. ___ l RUN~ ______ Ill_ G·cLK 

You can see that the first pulse is not the r1s1ng edge of the clock but is 
the rising edge of G. In general this is bad, since now the timing is no 
longer synchronized vJith the system clock. Another problem is the possible 
generation of a "RUNTJI pulse if the gate and clock overlap only a small 
amount. Such a pulse may or may not trigger a flip-flop clock. This can 
cause the system to be '~lmost reliable'' which is an impossible situation 
to trouble shoot. There is still a third problem with the gated clock. 
Real signals are never nice square waves as shown above. Suppose the CLK 
is clean but G contains a noise spike when both G and CLK are supposed to 
be true. You will get an extra clock edge on G • CLK! Extra clocks are 
seldom beneficial. 

What we need is a device called an enabled clock passer. At the black 
box level it has the following properties: 

1) The system clock can be continuously presented to the ECP, 
2) A separate enable line will be tested by the ECP just before the system 

clock positive edge. 
a) If enable = H, exactly one clock cycle will appear at the output, 
b) If enable = L, the output will remain low. 
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3) The above must be accomplished without gating the system clock. 

A circuit to accomplish this is shown below: 

If EN is present at the clock edge the FF will set making Q = 1. It will 
remain there for !z clock cycle at which time "CLK and Q are both true so the output of the AND gate is L which will reset the flip flop. Thus the FF reproduces the positive half of the clock cycle. Even so the above circuit can be subject to failure if the propagation delay of the inverter is 
longer than the delay of the flip-flop. This should be demonstrated by 
~~.J!_J:i.mir:u~- diagram. In the lab kit'i::his''"pr"o5Ieffi'"'T8-80rved.-l5Y using 
a very higl1·speed inverter to produce "CLK. The skew between CLK and C"LK" 
is 6 ns. The propagation delay of the 74174 is typically 20 ns. To further reduce the sensitivity to the critical timing between m and Q a l0';\1 power AND gate (74100) is used. These gates have propagation delays of 35 ns and are quite insensitive to runt pulses. 

The feeling you should get from the above discussion is that gating 
the system clock is dangerous; that the ECP is a better solution, the ECP 
is still not the ideal solution. 

The ideal solution is to use the gated D flip-flop used in the interrupt system (IE). If these flip-flops were used for registers the system clock could be hooked to the gated D clock line continuously without any gating 
on that line. The G line involves gating but now it is in the da_~§. path. The only requirement is that G be stable at the clock tick. Unfortunately, these IC 's are just now becoming commercially available so we are forced to use a less than ideal solution. Future designs should always use the gated D for registers. 

ACCUMULATOR EQUATIONS 

The accw:nulator is shown in fig. LD19 and is made from three universal shift registers (74194). These registers are controlled by two bits, ACSO and ACSl as shown in the follo\·ling tables: 

_8_1 ____ ~9---~----·--------.----H H load new data 
H L shift left · 
L H shift right 
L L retain old data 

'-
:--\ <. 

\. 
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The primary signals for AC control are: 

load ALU output into AC AC(L) 
P~-\R 

RA.L 
CLA 

shift AC right (circular shift with LINK) 

The encodings for ACSO, ACSl are: 

Sl ~ AC(L) + RAL 
S 0 = AC (L) + RAR 

shift 
clear 

AC left (circular 
(asynchronous) 

gate A92, pin 8 
gate A92, pin 6 

shift with LINK) 

Note that since the clear is asynchronous there must be no noise on that 
line. The equations for RAR, RAL, and CLA can be derived from the execute 
flow chart: 

RAR OPGl·IR8 (CF4+ IRlO • CPS) 
RAL = OPGl·IR9 (CP6 + IRlO • CP7) 
CLA - OPGl· IR~'f •CPO + (OPG2 ·IR4 + DCA) ·CPl + CLRP 
~---~~-~--. __ (gLRP is derived from the control panel clear button) 

LINK EQUATIONS 

The link is a single FF (B8, fig. LD19) used to store the carry out 
of the accumulator. Each carry generated by an arithmetic operation 
(TAD + IAC) must complement the link. The link can also be complemented 
by a microcoded instruction, CML (7020). There is one other microinstruc­
tion which can affect the link, CLL (7100) which clears it. 

By reference to the execute flow chart we c.an derive the link control 
equations (figure 10) 

CLL = OPG1·CPO•IR5 + CLRP 
CMJ.,:= OPGl•CP2•IR7 +(TAD+ OPGl•CP3•IRll)•COUT 

Since we are nearly finished with our disc.ussion of the design we will 
implement the link in a sophisticated manner. We will lead up to this by 
easy stages. The result is shown in LD23. 

1) A way to look at a JK flip-flop is that the output opposite the input 
will be the one responding to the input. 

if 
if J = 1, Q will be set if K 
if K = 1, ~will be set if J 
2, 3, 6, 7 are pin numbers 

0 
0 

2) This allows us to turn the flip-flop "over" and relabel J, K, Q, Q". It 
is still true that: 

r;=----, 
3 0 1fl7 if J 1' Q will be set if K 0 I i if K == 1, Q" will be set if J 0 I i 

I I 
2 [_l(_ ~~J 0 
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3) A D FF can be made from a JK FF by making K = J. 

((D 1' J 1' K 0 and Q lvill set (=1) 
P--9 -r~~1 

if D = o, J 0, K l and Q will reset (=0) 

y--1-{~~--s-J i.e. , Q = D after a clock 
4) A very nice version of a J"K would have the K lo~v active and the J high active since this device could be converted into a D simply by connecting J directly to K. 

~-;·1 
I I 
I I 
I ' df( ~I L ____ _j 

is aD since K = J. 

One manufacturer has recognized this and produces such an FF (Fairchild 9024). 

5) An exclusive OR can also be regarded as a controlled inverter as can be seen from its truth table: C It 0 0 0 
0 1 1 
1 0 1 
1 1 0 

C control 
I = input 
¢ = output 

When C = 0, 0 = I; when C = 1, ¢ = T. 
6) We can use this fact to convert a JKFF into a dual purpose FF. 

vlhen C = 1 it acts like a D FF when C = 0 and D = 0 it will retain 
its old value. When C = 0 and D "" 1, it will toggle. 
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7) Hrite 11~~ maps for C, D as functions of RAL, RAR, CML. Note that only one v Lable of RAL, RAR, CML can be true at one time. This is respon­sible for the don't care conditions below: 

DE~o~A !._J /j~A-;?B/0 
U-7 L. --~-- --- - L 

- - -
----·----~· ----

R = rt. shift data L = left shift data 
See Clare's book, Sec. 4.4 for the interpretation of the map forD 

C = RAL + RAR 
D CML + RAR • R + RAL • L 

Draw the logic diagram for these equations and verify that it works. 

9) Redrmv using 74-54 AND, OR, INVERT gate and 9024 JK FF. 

li'AI. 

L 

I I . , I 
I I 

l -·' \---------.. I l --,j " ,-------. - -,1 ------~ ~ _ I ) J( I \ ( ·-,, /' ' ! ______ )__ ___ /- ------ --~, L~/ L_ ________ __l i?A-Y 

<'\\--'""' = )~-- -\ 
d) ; - L ___ / ' ______ / ·----
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CONTROL PANEL SIGNALS (Fig. LD8) 

All of the pushbutton signals from the panel are debounced by RS flip­flops before being sent to the edge connecto'l:'. By correct jumpering the polarity of each signal can be chosen H or L when the switch is depressed. Your panels are wired to produce L polarities on switch depression. 

Some of these signals must be shortened to one pulse synchronized v.Jith the system clock. This can be accomplished by a two bit shift register, (A62, pin 2) and (A62, pin 12). This can be shown by the timing diagram: 

DE BOUNCED 
SWITCH 

SYST 
CLK 

Q 1st 
DFF 

Q 2nd 
DFF 

Ql•Q2 

__ r-:_Jt_ Jl ... J-l ___ __r-t __ I 
r·---------------~---------l 

____________ _j -----------------·-

r··--
______ _j ! ___________________ _ 

Note that the switch must be held down for at least one clock edge. Host of the signals are ANDED with R'UN so they will be active only when the machine is not running. 
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